期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
城市功能分区的空间聚类方法研究及其应用——以济南市为例 被引量:17
1
作者 王艳 宋振柏 吴佩林 《地域研究与开发》 CSSCI 北大核心 2009年第1期27-31,共5页
作为空间数据挖掘的一种重要手段,空间聚类目前已在许多领域得到了应用,它是城市功能分区中的关键性步骤。根据空间-属性一体化的概念模型,把影响城市功能分区的空间坐标、空间关系和属性特征纳入到统一的空间计算模型,分别运用K-平均... 作为空间数据挖掘的一种重要手段,空间聚类目前已在许多领域得到了应用,它是城市功能分区中的关键性步骤。根据空间-属性一体化的概念模型,把影响城市功能分区的空间坐标、空间关系和属性特征纳入到统一的空间计算模型,分别运用K-平均算法、神经网络方法,对城市功能分区进行空间聚类计算,充分挖掘空间坐标和空间关系数据中隐含的空间聚集信息。实例分析表明,基于神经网络的空间聚类结果可以为城市功能分区提供准确、可靠的依据。 展开更多
关键词 城市功能分区 空间数据挖掘 空间聚类 k-平均法 神经网络
下载PDF
Integrating OWA and Data Mining for Analyzing Customers Churn in E-Commerce 被引量:1
2
作者 CAO Jie YU Xiaobing ZHANG Zhifei 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2015年第2期381-392,共12页
Customers are of great importance to E-commerce in intense competition.It is known that twenty percent customers produce eighty percent profiles.Thus,how to find these customers is very critical.Customer lifetime valu... Customers are of great importance to E-commerce in intense competition.It is known that twenty percent customers produce eighty percent profiles.Thus,how to find these customers is very critical.Customer lifetime value(CLV) is presented to evaluate customers in terms of recency,frequency and monetary(RFM) variables.A novel model is proposed to analyze customers purchase data and RFM variables based on ordered weighting averaging(OWA) and K-Means cluster algorithm.OWA is employed to determine the weights of RFM variables in evaluating customer lifetime value or loyalty.K-Means algorithm is used to cluster customers according to RFM values.Churn customers could be found out by comparing RFM values of every cluster group with average RFM.Questionnaire is conducted to investigate which reasons cause customers dissatisfaction.Rank these reasons to help E-commerce improve services.The experimental results have demonstrated that the model is effective and reasonable. 展开更多
关键词 Customer life value E-COMMERCE k-MEANS OWA.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部