期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于RBM-KNN的脑部磁共振图像分类 被引量:4
1
作者 孟志伟 刘惠义 陈霜霜 《信息技术》 2017年第4期169-173,共5页
为加快医学图像分类速度,提高分类精确率,文中采用受限玻尔兹曼机(Restricted Boltzmann Machine,RBM)结合K近邻(K-Nearest Neighbor,KNN)分类器方法。首先构建可视层二值对隐层二值RBM,利用RBM训练得到特征提取器,该特征提取器可同时... 为加快医学图像分类速度,提高分类精确率,文中采用受限玻尔兹曼机(Restricted Boltzmann Machine,RBM)结合K近邻(K-Nearest Neighbor,KNN)分类器方法。首先构建可视层二值对隐层二值RBM,利用RBM训练得到特征提取器,该特征提取器可同时实现特征降维,然后特征提取器从像素单元直接提取图像特征,最后用KNN将特征分类,并用测试样本检验分类准确性。将文中方法用在脑部磁共振图像数据库分类中,实验结果表明,提出的方法具有良好的分类准确率,且明显高于基于单一统计特征提取的医学图像分类方法。 展开更多
关键词 受限玻尔兹曼机 k-邻分类法 特征降维 医学图像 脑部磁共振
下载PDF
地震后机载LiDAR点云的地物区分方法研究 被引量:5
2
作者 王金霞 窦爱霞 +2 位作者 王晓青 黄树松 张雪华 《震灾防御技术》 CSCD 北大核心 2017年第3期677-689,共13页
利用机载激光雷达扫描(Light Detection and Ranging,LiDAR)技术所得点云进行震后倒塌建筑物提取时,树木与倒塌建筑物的点云特征十分相似,较难区分。为了快速准确获取震后房屋建筑物的受损情况,本文提出使用回波次数比特征指标,结合前... 利用机载激光雷达扫描(Light Detection and Ranging,LiDAR)技术所得点云进行震后倒塌建筑物提取时,树木与倒塌建筑物的点云特征十分相似,较难区分。为了快速准确获取震后房屋建筑物的受损情况,本文提出使用回波次数比特征指标,结合前人所提出的点云回波强度、归一化强度、最邻近点高差、法向量夹角、X向坡角和Y向坡角等特征的均值和标准差,利用K-最近邻分类法实现单体地物区分的方法。对2010年海地7.0地震震后机载LiDAR数据进行了地面点去除,分别选取了未倒塌建筑物、倒塌建筑物和树木各50个训练样本和各20个测试样本,计算了各因子的分布及其均值和标准差,在分析的基础上最终选取了可分性较强的8个分类特征,利用K-最近邻分类法对测试样本进行了分类,结果显示分类正确率可达85%以上。研究表明选取多个有效的LiDAR点云分类特征可以较好地区分震后未倒塌建筑物、倒塌建筑物和树木,提高震后建筑物震害程度判定的准确性,为应急救援及时提供较为准确的灾情信息支持。 展开更多
关键词 机载LiDAR点云 k-最近分类法 倒塌建筑物 地震应急 分类
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部