1.Objective The Altay Orogenic Belt in Xinjiang,China is located in the west of the Central Asian Orogenic Belt and in the transition zone between the Siberian Plate and the Kazakhstan-Junggar Plate,extending approxim...1.Objective The Altay Orogenic Belt in Xinjiang,China is located in the west of the Central Asian Orogenic Belt and in the transition zone between the Siberian Plate and the Kazakhstan-Junggar Plate,extending approximately 500 km in northern Xinjiang,China(Fig.1a).The Altay Orogenic Belt has undergone two-way accretion of the Paleozoic crust and the Meso-Cenozoic intracontinental orogeny,leading to the formation of large numbers of intermediate-acid intrusions.More than 100000 pegmatite veins have been discovered in the intermediate-acid intrusions,and they constitute an important rare metal metallogenic belt of China(Fig.1b).展开更多
As the principal ore mineral in various tungsten(-gold)deposits,scheelite(CaWO_(4))plays an important role in directly dating the timing of ore formation,and in tracing associated material sources through the study of...As the principal ore mineral in various tungsten(-gold)deposits,scheelite(CaWO_(4))plays an important role in directly dating the timing of ore formation,and in tracing associated material sources through the study of its Sm-Nd geochronology and Nd isotopic characteristics.Since the retention of Sm-Nd systematics within scheelite is presently unconstrained,equivocal interpretations for isotopic data resulting from this method have occurred quite often in previous studies that apply these isotopic data.In order to better elucidate the closure of Sm-Nd in scheelite,the kinetics of Sm and Nd within this mineral lattice were investigated through calculation of diffusion constants presented herein.The following Arrhenius relations were obtained:D_(Nd)=4.00exp(-438 kJ·mol^(–1)/RT)cm^(2)/s D_(Sm)=1.85exp(-427 kJ·mol^(–1)/RT)cm^(2)/s showing diffusion rate of Nd is near identical to Sm in scheelite when at the same temperature.However,compared to other rare earth elements(REEs),which have markedly different atomic radii to either Nd or Sm,these are shown to exhibit a great variation in diffusivities.The observed trends in our data are in excellent agreement with the diffusion characteristics of REEs in other tetragonal ABO4 minerals,indicating that ionic radius is a key constraint to the diffusivity of REEs in the various crystal lattices.With this in mind,the same substitution mechanism and a very slight discrepancy in radii will allow us to infer that significant Sm/Nd diffusional fractionation in scheelite is unlikely to occur during most geological processes.Based upon the diffusion data determined herein,Sm and Nd closure temperatures and retention times in scheelite are discussed in terms of diffusion dynamics.Those results suggest that closure temperatures for Sm-Nd within this mineral are relatively high in contrast to the temperature ranges of ore-formation responsible for scheelite-related deposits,and any later thermal environments.It is likely,therefore,that relevant isotopic information could be easily retained under most geological conditions,since initial crystallization of the scheelite.In addition,comparison of this mineral-element pair over a range of temperatures with some other common minerals used as geochronometers(e.g.,zircon and apatite)indicates that Sm-Nd system has a slower diffusive rate in scheelite than for Sr in apatite or Ar in quartz,and only a little faster than for Pb in zircon.It should be noted,within most hydrothermal deposits where zircon has crystallized,its size is typically no more than 100μm,whereas scheelite commonly occurs as macroscopic grains.For this reason,the larger dimensions of scheelite would provide a robust Sm-Nd system more able to resist perturbations,relating to any later thermal process.As such Sm-Nd investigations of scheelite are akin to U-Pb within zircon samples used in isotopic dating.These observations indicate that Sm-Nd age and isotopic information can provide reliable data in all but the most extreme case,especially when data are extracted from macroscopic grains of scheelite that are chosen to be“pristine”(i.e.,free of surface alteration and/or fractures).展开更多
Glauconite, as a K-rich authigenic phyllosilicate, is an ideal specimen to obtain the isotopic age of sedimentary rock by means of K-Ar isotopic determination, especially in the application of ancient sedimentary rock...Glauconite, as a K-rich authigenic phyllosilicate, is an ideal specimen to obtain the isotopic age of sedimentary rock by means of K-Ar isotopic determination, especially in the application of ancient sedimentary rocks, because of its simultaneous formation with sediments. As for the glauconite in recent marine sediments, there have been also reports on the isotopic age which appears to range from 2 to 70 Myr. It seems that glauconite was terrigenous-allogenic, i.e. it was eroded展开更多
On the basis of detailed geological studies of the Wulong gold deposit, three metallogenic stages can be identified. With quartz fluid inclusions as an object of study, the authors investigated phase characteristics, ...On the basis of detailed geological studies of the Wulong gold deposit, three metallogenic stages can be identified. With quartz fluid inclusions as an object of study, the authors investigated phase characteristics, compositional variations, temperature and pressure changes, fluid evolution, Pb isotope tracing and Rb-Sr isotopic dating of fluid inclusions entrapped in the above three metallogenic stages. The results show that Na+ is decreased obviously with metallogenic evolution, while K+ and other cations and gas compositions (H2, CO, CH4 and CO2) are increased slightly, and that the temperature and salinity vary in a pulsating manner along with the metallogenic evolution. Inverse calculation of hydrogen and oxygen isotopes indicate that at the first metallogenic stage the fluids were magmatic water, at the second stage they were dominated by magmatic water with a minor amount of meteoric water involved, and at the third stage, i.e., the final stage of metallogenesis, the fluids were composed completely of meteoric water. Its Pb isotopic composition implicates that the ore lead has some affinities with the lead in the Sanguliu granite, but the linear array of the ore-lead isotopic data reflects a mixing source of two end members. It can be deduced that the ore-forming materials and magma were both derived mainly from the same magma source region at depths. The Rb-Sr isotopic ages of the fluid inclusions are 112.2±3.2 Ma, indicating that the Wulong gold deposit was formed during the Yanshanian period.展开更多
Objective In recent years, a series of tungsten prospecting breakthroughs have been made in the southern Qinling Mountains. Especially, a new deposit type with a scheelite -beryl-molybdenite assemblage in the Zhen'a...Objective In recent years, a series of tungsten prospecting breakthroughs have been made in the southern Qinling Mountains. Especially, a new deposit type with a scheelite -beryl-molybdenite assemblage in the Zhen'an area of Shaanxi Province was firstly discovered. This deposit is currently in a detailed investigation stage, and no detailed study has been yet conducted. This work selected one molybdenite sample from the Be (W) ores in this deposit for Re-Os isotope measurements to define the time limit of tungsten and beryllium mineralization, and to further reveal the ore-forming geological setting of rare metals in the southern Qinling region.展开更多
The Dahongshan Fe-Cu(-Au)deposit is a superlarge deposit in the Kangdian metallogenic belt,southwestern China,comprising approximately 458 Mt of Fe ores(40%Fe)and 1.35 Mt Cu.Two main types of Fe-Cu(-Au)mineralization ...The Dahongshan Fe-Cu(-Au)deposit is a superlarge deposit in the Kangdian metallogenic belt,southwestern China,comprising approximately 458 Mt of Fe ores(40%Fe)and 1.35 Mt Cu.Two main types of Fe-Cu(-Au)mineralization are present in the Dahongshan deposit:(1)early submarine volcanic exhalation and sedimentary mineralization characterized by strata-bound fine-grained magnetite and banded Fe-Cu sulfide(pyrite and chalcopyrite)hosted in the Na-rich metavolcanic rocks;(2)late hydrothermal(-vein)type mineralization characterized by Fe-Cu sulfide veins in the hosted strata or massive coarse-grained magnetite orebodies controlled by faults.While previous studies have focused primarily on the early submarine volcanic and sedimentary mineralization of the deposit,data related to late hydrothermal mineralization is lacking.In order to establish the metallogenic age and ore-forming material source of the late hydrothermal(-vein)type mineralization,this paper reports the Re-Os dating of molybdenite from the late hydrothermal vein Fe-Cu orebody and H,O,S,and Pb isotopic compositions of the hydrothermal quartz-sulfide veins.The primary aim of this study was to establish the metallogenic age and ore-forming material source of the hydrothermal type orebody.Results show that the molybdenite separated from quartz-sulfide veins has a Re-Os isochron age of 831±11 Ma,indicating that the Dahongshan Fe-Cu deposit experienced hydrothermal superimposed mineralization in Neoproterozoic.The molybdenite has a Re concentration of 99.7-382.4 ppm,indicating that the Re of the hydrothermal vein ores were primarily derived from the mantle.The δ^(34)S values of sulfides from the hydrothermal ores are 2‰-8‰ showing multi-peak tower distribution,suggesting that S in the ore-forming period was primarily derived from magma and partially from calcareous sedimentary rock.Furthermore,the abundance of radioactive Pb increased significantly from ore-bearing strata to layered and hydrothermal vein ores,which may be related to the later hydrothermal transformation.The composition of H and O isotopes within the hydrothermal quartz indicates that the ore-forming fluid is a mixture of magmatic water and a small quantity of water.These results further indicate that the late hydrothermal orebodies were formed by the Neoproterozoic magmatic hydrothermal event,which might be related to the breakup of the Rodinia supercontinent.Mantle derived magmatic hydrothermal fluid extracted ore-forming materials from the metavolcanic rocks of Dahongshan Group and formed the hydrothermal(-vein)type Fe-Cu orebodies by filling and metasomatism.展开更多
Located along the southern part of the West Qinling orogenic belt,the Yangshan gold deposit is one of the largest in China.The major gold ores of Yangshan are disseminated in metasedimentary host rocks with minor nati...Located along the southern part of the West Qinling orogenic belt,the Yangshan gold deposit is one of the largest in China.The major gold ores of Yangshan are disseminated in metasedimentary host rocks with minor native gold amounts in stibnite-gold quartz veins.Pyrite and arsenopyrite are the major Au-bearing minerals.Hydrothermal muscovite from gold-bearing quartz veins was dated using the in situ Rb-Sr method to determine the formation age of the Yangshan gold deposit.The Rb-Sr isochron date of the muscovite yielded 210.1±5.6 Ma(MSWD=1.2).This date is near the lower end of the period of the mineralized granitic dykes(210.49-213.10 Ma).Two stages of gold enriching process are recognized in the gold-bearing pyrite:the first is incorporated with the Co,Cu,As,Ni enrichment;and the second is accompanied by Bi,Co,Ni,Pb,Cu,Sb concentration.The in-situ sulfur isotopic values of pyrites show a restrictedΔ34s range of-1.43‰to 2.86‰with a mean value of 0.43‰.Trace-element mapping and in-situ sulfur isotopic analysis of pyrite suggest that the sulfur deposits are likely derived from a magmatic source and likely assimilated by sulfur from the sedimentary bedrock.Thus,magmatism plays a critical role in the formation of the Yangshan gold deposit.展开更多
The South Altyn continental block is an important geological unit of the Altyn Tagh orogenic belt, in which numerous Neoproterozoic granitoids crop out. Granitoids are mainly located in the Paxialayidang-Yaganbuyang a...The South Altyn continental block is an important geological unit of the Altyn Tagh orogenic belt, in which numerous Neoproterozoic granitoids crop out. Granitoids are mainly located in the Paxialayidang-Yaganbuyang area and can provide indispensable information on the dynamics of Rodinia supercontinent aggregation during the Neoproterozoic. Therefore, the study of granitoids can help us understand the formation and evolutionary history of the Altyn Tagh orogenic belt. In this work, we investigated the Yaganbuyang granitic pluton through petrography, geochemistry, zircon U-Pb chronology, and Hf isotope approaches. We obtained the following conclusions: (1) Yaganbuyang granitoids mainly consist of two-mica granite and granodiorite. Geochemical data suggested that these granitoids are peraluminous calc-alkaline or high-K calc-alkaline granite types. Zircon U-Pb data yielded ages of 939~7.1 Ma for granodiorite and ~954 Ma for granitoids, respectively. (2) The ~Hf(t) values of two--mica granite and granodiorite are in the range of-3.93 to +5.30 and -8.64 to +5.19, respectively. The Hf model ages (TDM2) of two-mica granite and granodiorite range from 1.59-.05 Ga and 1.62-2.35 Ga, respectively, indicating that the parental magma of these materials is derived from ancient crust with a portion of juvenUe crust. (3) Granitoids formed in a collisional orogen setting, which may be a response to Rodinia supercontinent convergence during the Neoproterozoic.展开更多
The giant Huize Zn-Pb ore field in Yunnan Province, southwestern China, comprises the Qilinchang and Kuangshanchang deposits. The deposits are large in scale (more than 5 Mt of Zn and Pb) and high in grade (average gr...The giant Huize Zn-Pb ore field in Yunnan Province, southwestern China, comprises the Qilinchang and Kuangshanchang deposits. The deposits are large in scale (more than 5 Mt of Zn and Pb) and high in grade (average grade of total Zn and Pb is 30%). Reported in this paper are the results of Rb-Sr isotopic dating of sphalerite from this ore field. Two precise ages (223.5±3.9 Ma and 226±6.4 Ma) have been obtained from two isochrons. These two ages are close to the reported ages of native copper mineralizations related to the Emeishan flood basalts in this region, which are 226 Ma to 228 Ma. Previous studies showed that the magnitude of uplift resultant from the Emeishan flood basalts is greater than 1000 m, indicating that the Kuangshanchang and Qilinchang deposits were formed during the same geological event and originated by fluid migration during uplifting resultant from the Emeishan flood basalts.展开更多
Keban magmatics consist of plutonic rocks of acidic and intermediate compositions with diffe rent phases. They are the equivalent of surface rocks. In the current study on plutonic rocks, general petrographic features...Keban magmatics consist of plutonic rocks of acidic and intermediate compositions with diffe rent phases. They are the equivalent of surface rocks. In the current study on plutonic rocks, general petrographic features, disequilibrium textures such as skeletal formation in minerals, poikilitic texture, oscillatory zoning, and mineral fragmentation, and growth states are observed. Besides these microscopic properties, the existence of rounded mafic enclaves of various sizes, petrographic synplutonic dykes, and field data support the idea that mafic and felsic magmas are mixed. Keban magmatics have I-type, metaluminous-peraluminous characteristics. Diorites and quartz diorites have low-K tholeiitic features, whereas tonalites have low-K calcalkaline features. Compared with diorites, tonalites are richer in terms of LREE (Rock/ Chondrite);Rb, Sr, and Ba (LILE);and Hf, Zr, Th, and U (HFSE) elements. LILE enrichment, which signals the crustal contamination of mantle- originated magmas, is particularly observable in tonalites. In both rock groups, the negative anomaly of Nb is a sign of similarity of pluton to the subduction zone magma series. Based on the K-Ar geochronology dating of amphibole minerals, the ages of these rocks are found to be 75.65 ± 1.5 and 59.77 ± 1.2 Ma in tonalites and 84.76 ± 1.8 and 84.35 ± 1.7 Ma in diorite and quartz diorites. The 87Sr/86Sr isotope ratios in tonalites are 0.705405 and 0.706053, whereas these ratios are 0.704828 and 0.704754 in dioritic rocks. Pb isotope ratios are similar in both rock types.展开更多
The Zhongshan Station of China is located in the Larsemann Hills, East Antarctica. Low pressure granulite facies gneisses together with late granites are outcroped in the region. Three biotite samples from a garnet se...The Zhongshan Station of China is located in the Larsemann Hills, East Antarctica. Low pressure granulite facies gneisses together with late granites are outcroped in the region. Three biotite samples from a garnet segregation, a syenogranite and a granite-pegmetite were measured with 40Ar/39Ar incremental heating technique. Biotites from the garnet segregation give an 40Ar/39Ar plateau age of 504±1Ma. Biotites from the syenogranite yield an 40Ar/39Ar plateau age of 494 ±1 Ma. Biotites from the granite-pegmatite give an 40 Ar/39 Ar plateay age of 486±1Ma. They verify 500 Ma thermal event called 'Pan African event' by previous K-Ar and Rb-Sr data. They are cooling ages of the biotites when the paleogeotherm of the area droped to the K-Ar closure temperature for biotite.展开更多
The samples of ductile-rheologic deformational augen granite from the Yunkai uplift area, western Guangdong province, were determined by the whole-rock Sm-Nd, Pb-Pb and Rb-Sr isotopic dating to have an Sm-Nd isochron ...The samples of ductile-rheologic deformational augen granite from the Yunkai uplift area, western Guangdong province, were determined by the whole-rock Sm-Nd, Pb-Pb and Rb-Sr isotopic dating to have an Sm-Nd isochron age of 1414±68 Ma, a Pb-Pb isochron age of 1388±90 Ma and a Rb-Sr isochron age of 490±36 Ma. The first two ages are interpreted as the formation age of this suite of granite and the last age represents the timing of the tectono-thermal event of Caledonian ductile-rheologic shear partial melting. It is indicated that in the study area not only an orogeny took place in the Caledonian, but also a more important tectono-magmatic activity occurred in the Meso-proterozoic there, which may be related to the subduction-collision between the Yangtze block and Cathaysia block.展开更多
As a part of a giant trending fault system in the Asian continent and one where a strong zone of left strikeslip fault is present,the Altyn Orogenic belt(AOB)has become an important focus for research.Magmatic rocks a...As a part of a giant trending fault system in the Asian continent and one where a strong zone of left strikeslip fault is present,the Altyn Orogenic belt(AOB)has become an important focus for research.Magmatic rocks are widely distributed across the AOB.However,many investigations have focused primarily on Paleozoic igneous rocks;discussion of Mesozoic related igneous activity is often ignored.Here we present the result of studies of representative diorite and granite rocks outcropping in the AOB,within the Xinjiang Uygur Autonomous Region,South Altyn,China.We present new zircon LA-ICP-MS U-Pb age,geochemical,and Sr-Nd-Pb-Hf isotopic data for these sample suites,identifying them as typical igneous rocks formed between 238±1.5 and 238.8±1.1 Ma.The rocks that we studied fall into the alkaline series,also enriched in light rare earth elements(LREE),some large ion lithophile elements(LILE;e.g.,Rb,Ba,Sr,and K),Pb,Th and U,and depleted in heavy rare earth elements(HREE),Nb,Ta,Hf,and Ti.The granite and diorite have high initial 87Sr/86Sr ratios(0.7062-0.7114),negativeεNd(t)values(-8.8 to-11.3),εHf(t)values(-8.7 to-18.7),and relatively constant Pb isotopic ratios((206-Pb/204Pb)i=6.74-17.884,(207Pb/204Pb)i=15.51-15.58,and(208Pb/204Pb)i=35.36-38.04),respectively.This suggests that the magmas parental to these rocks were generated from the partial melting of the ancient crust.The parental magmas to these rocks experienced a degree of fractionation of plagioclase,K-feldspar,and hornblende,possibly during rapid magma ascent.Based on these studies,we propose a reasonable model for the origin of the investigated rocks from the Xinjiang Uygur Autonomous Region of South Altyn,which involves crustal thickening,lithospheric extension,and asthenosphere upwelling,that induced crustal melting.展开更多
Twenty black shale samples, which are free from the influence of weathering, were collected from the Chengjiang Fauna-bearing horizon, central Yunnan Province, yielding a Pb-Pb isochron age of 534±60 Ma. Although...Twenty black shale samples, which are free from the influence of weathering, were collected from the Chengjiang Fauna-bearing horizon, central Yunnan Province, yielding a Pb-Pb isochron age of 534±60 Ma. Although this age is younger than both the Rb-Sr isochron age and 40Ar-39Ar age, it should represent the lower isotopic age limit of the Chengjiang Fauna.展开更多
Mesozoic bimodal volcanic rocks of basaltic andesite and rhyolite are widely distributed in the Da Hinggan Range, but their petrogenetic relationships and geodynamic implications are rarely constrained. Detailed studi...Mesozoic bimodal volcanic rocks of basaltic andesite and rhyolite are widely distributed in the Da Hinggan Range, but their petrogenetic relationships and geodynamic implications are rarely constrained. Detailed studies on doleritic and porphyry dikes in the Zhalantun area indicate that they display features of magma mixing, suggesting their coeval formation. In situ zircon U-Pb dating shows that the porphyry was emplaced in the Early Cretaceous with a ^206Pb/^238U age of 130±1 Ma. Zircons from the dolerite also yield an Early Cretaceous emplacement age of 124±2 Ma although some inherited zircons have been identified. These age results indicate that the Early Cretaceous was an important period of magmatism in the Da Hinggan Range. Zircons from porphyry are characterized by positive value of εHf(t) as high as 10.3±0.5 with Hf depleted mantle model age of 349-568 Ma, whereas magmatic zircons from the dolerite have εHf(t) value of 11.0±1.4 with Hf depleted mantel model age of 342-657 Ma, consistent with those from the porphyry. Considering other data on the geological evolution of this area, it is concluded that the mafic magma originated from the partial melting of Paleozoic enriched lithospheric mantle, whereas the felsic magma came from recycling of juvenile crust formed during the Paleozoic. Both of the protoliths are closely related to the subduction of the Paleo-Asian Ocean during the Paleozoic, indicating that the Paleozoic is an important period of large-scale crustal growth in the area.展开更多
Granitic pegmatites are commonly thought to form by fractional crystallization or by liquid immiscibility of granitic magma; however, these proposals are based mainly on analyses of fluid and melt inclusions. Here, we...Granitic pegmatites are commonly thought to form by fractional crystallization or by liquid immiscibility of granitic magma; however, these proposals are based mainly on analyses of fluid and melt inclusions. Here, we use the Jiajika pegmatite deposit, the largest spodumene deposit in Asia, as a case study to investigate ore forming processes using isotope dating. Dating of a single granite sample from the Jiajika deposit using multiple methods gave a zircon U-Pb SHRIMP age of 208.4 ~ 3.9 Ma, an 4~Ar/39Ar age for muscovite of 182.9 ~ 1.7 Ma, and an 4~Ar/39Ar age for biotite of 169.9 + 1.6 Ma. Based on these dating results and the 4~Ar/39Ar age of muscovite from the Jiajika pegmatite, a temperature-time cooling track for the Jiajika granite was constructed using closure temperatures of the different isotope systems. This track indicates that the granite cooled over ^-40 m. y., with segregation of the pegmatite fluid from the granitic magma at a temperature of ~700~C. This result suggests that the Jiajika pegmatite formed not by fractional crystallization, but by segregation of an immiscible liquid from the granitic magma. When compared with fractional crystallization, the relatively early timing of segregation of an immiscible liquid from a granitic magma can prevent the precipitation of ore-forming elements during crystallization, and suggests that liquid immiscibility could be an important ore-forming process for rare metal pegmatities. We also conclude that isotope dating is a method that can potentially be used to determine the dominant ore-forming processes that occurred during the formation of granite-related ore deposits, and suggest that this method can be employed to determine the formation history of the W-Sn ore deposits found elsewhere within the Nanling Metallogenic Belt.展开更多
The Indosinian post-collisional Wulong pluton intruded into the Mesoproterozoic Fuping Group, South Qinling, central China. In the southern part of the pluton, some mafic enclaves have sharp or gradational contact rel...The Indosinian post-collisional Wulong pluton intruded into the Mesoproterozoic Fuping Group, South Qinling, central China. In the southern part of the pluton, some mafic enclaves have sharp or gradational contact relationships with the host biotite granodiorite. Geochemistry, zircon LA-ICP MS (laser ablation inductively-coupled plasma mass spectrometry) U-Pb chronology and Sr- Nd-Pb isotope geochemistry of the pluton are reported in this paper. The biotite granodiorite shows close compositional similarities to high-silica adakite. Its chondrite-normalized REE patterns are characterized by strong HREE depletion (Yb = 0.33--0.96 10-6 and Y = 4.77-11.19 ×10^-6), enrichment of Ba (775-1386 x 10-6) and Sr (643-1115 × 10^-6) and high Sr/Y (57.83-159.99) and Y/Yb (10.99-14.32) ratios, as well as insignificant Eu anomalies (6Eu = 0.70-0.83), suggesting a feldspar-poor, garnet±amphibole-rich residual mineral assemblage. The mafic enclaves have higher MgO (4.15- 8.13%), Cr (14.79-371.31 × 10-6), Ni (20.00-224.24× 10^-6) and Nb/Ta (15.42-21.91) than the host granodiorite, implying that they are mantle-derived and might represent underplated mafic magma. Zircon LA-ICP MS dating of the granodiorite yields a ^206pb/^238U weighted mean age of 208±2 Ma (MSWD=0.50, 1σ), which is the age of emplacement of the host biotite granodiorite. This age indicates that the Wulong pluton formed during the late-orogenic or post-collisional stage (〈242±21 Ma) of the South Qinling belt. The host biotite granodiorite displays ^87Sr/^86Sr = 0.7059-0.7062, Isr = 0.7044-- 0.7050,^143Nd/^144Nd = 0.51236-0.51238, εNd(t)= -2.26 to -2.66 to ^206Pb/^204pb = 18.099-18.209, ^207pb/^204pb = 15.873-15.979 and ^208pb/^204pb = 38.973-39.430. Those ratios are similar to those of the Mesoproterozoic Yaolinghe Group in the South Qinling. Furthermore, its Nd isotopic model age (-1.02 Ga) is consistent with the age (-1.1 Ga) of the Yaolinghe Group. Based on the integrated geological and geochemical studies, coupled with previous studies, the authors suggest that the Wulong adakitic biotite granodiorite was probably generated by dehydration melting of the Yaolinghe Group-like thickened mafic crust, triggered by underplating of mafic magma at the boundary of the thickened mafic crust and hot lithospheric mantle, and that the Wulong adakitic biotite granodiorite may have resulted from thinning and delamination of the lower crust or breakoff of the subducting slab of the Mianlue ocean during the Indosinian post-collisional orogenic stage of the Qinling orogenic belt.展开更多
The Laocheng granitoid pluton is located in the South Qinling tectonic domain of the Qinling orogenic belt,southern Shaanxi Province,and consists chiefly of quartz diorite,granodiorite and monzogranite.A LA-ICP-MS zir...The Laocheng granitoid pluton is located in the South Qinling tectonic domain of the Qinling orogenic belt,southern Shaanxi Province,and consists chiefly of quartz diorite,granodiorite and monzogranite.A LA-ICP-MS zircon U-Pb isotopic dating,in conjunction with cathodoluminescence images,reveals that the quartz diorite and granodiorite were emplaced from 220 Ma to 216 Ma,while the monzogranite was emplaced at~210 Ma.In-situ zircon Hf isotopic analyses show that theε_(Hf)(t) values of the quartz diorite and granodiorite range from-8.1 to +1.3,and single-stage Hf model ages from 809 Ma to 1171 Ma,while theε_(Hf)(t)values of the monzogranite are-14.5 to +16.7 and single-stage Hf model ages from 189 Ma to 1424 Ma.These Hf isotopic features reveal that the quartz diorite, granodiorite and monzogranite were formed from the mixing of the magmas derived from partial melting of the depleted mantle and the lower continent crustal materials,and there were two stages of continental crust growth during the Neoproterozoic(~800 Ma)and Indosinian(~210 Ma)eras, respectively,in the south Qinling tectonic domain of the Qinling orogrnic belt,Central China.展开更多
The Miyun area of Beijing is located in the northern part of the North China Craton (NCC) and includes a variety of Archean granitoids and metamorphic rocks. Magmatic domains in zircon from a tonalite reveal Early N...The Miyun area of Beijing is located in the northern part of the North China Craton (NCC) and includes a variety of Archean granitoids and metamorphic rocks. Magmatic domains in zircon from a tonalite reveal Early Neoarchean (2752±7 Ma) ages show a small range in εHf(t) from 3.1 to 7.4 and tDM1(Hf) from 2742 to 2823 Ma, similar to their U-Pb ages, indicating derivation from a depleted mantle source only a short time prior to crystallization. SHRIMP zircon ages of granite, gneiss, amphibolite and hornblendite in the Miyun area reveal restricted emplacement ages from 2594 to 2496 Ma. They also record metamorphic events at ca. 2.50 Ga, 2.44 Ga and 1.82 Ga, showing a similar evolutionary history to the widely distributed Late Neoarchean rocks in the NCC. Positive eHf(t) values of 1.5 to 5.9, with model ages younger than 3.0 Ga for magmatic zircon domains from these Late Neoarchean intrusive rocks indicate that they are predominantly derived from juvenile crustal sources and suggest that significant crustal growth occurred in the northern NCC during the Neoarchean. Late Paleoproterozoic metamorphism developed widely in the NCC, not only in the Trans-North China Orogen, but also in areas of Eastern and Western Blocks, which suggest that the late Paleoproterozoic was the assembly of different micro-continents, which resulted in the final consolidation to form the NCC, and related to the development of the Paleo-Mesoproterozoic Columbia or Nuna supercontinent.展开更多
The Jiang Tso ophiolite, situated in the middle segment of the Bangong- Nujiang Suture Zone, is a part of the easternmost Qieli Lake ophiolite subzone and is close to the south of Pung Lake ophiolite. The rock associa...The Jiang Tso ophiolite, situated in the middle segment of the Bangong- Nujiang Suture Zone, is a part of the easternmost Qieli Lake ophiolite subzone and is close to the south of Pung Lake ophiolite. The rock association of Jiang Tso ophiolite is relatively complete and is mainly composed of metamorphic peridotite, gabbro and diabase. Comparing with N-MORB, the ophiolite is high in Mg and low in Ti, K, Na, P, and is depleted in Nb, Ta, Hf, Th and enriched in Rb, Sr and Ba. Geochemical characteristics of the Jiang Tso ophiolite indicate it is of a supra-subduction zone type formed in the spreading ridge of back arc basin. The SHRIMP U-Pb dating of zircons from the gabbro yielded a weighted average age of 188.1±4.1 Ma (MSWD=1.4), indicating the Jiang Tso ophiolite was formed in the late stage of early Jurassic. The Sr, Nd isotopic compositions show that the Tethyan mantle domain is the depleted mantle (DM), with enriched mantle domain II (EMII). They have the same Sr, Nd isotopic composition with the India Ocean MORB type.展开更多
基金Supported by the Natural Science Foundation of Shaanxi Province(2024JC-ZDXM-22,2020JM-311)the Project of China Geological Survey(DD20240128,DD20230284,DD20221636)。
文摘1.Objective The Altay Orogenic Belt in Xinjiang,China is located in the west of the Central Asian Orogenic Belt and in the transition zone between the Siberian Plate and the Kazakhstan-Junggar Plate,extending approximately 500 km in northern Xinjiang,China(Fig.1a).The Altay Orogenic Belt has undergone two-way accretion of the Paleozoic crust and the Meso-Cenozoic intracontinental orogeny,leading to the formation of large numbers of intermediate-acid intrusions.More than 100000 pegmatite veins have been discovered in the intermediate-acid intrusions,and they constitute an important rare metal metallogenic belt of China(Fig.1b).
基金financially supported by the National Natural Science Foundation of China(Grant No.41403035)the National Basic Research Program of China(Grant No.2014CB440901)。
文摘As the principal ore mineral in various tungsten(-gold)deposits,scheelite(CaWO_(4))plays an important role in directly dating the timing of ore formation,and in tracing associated material sources through the study of its Sm-Nd geochronology and Nd isotopic characteristics.Since the retention of Sm-Nd systematics within scheelite is presently unconstrained,equivocal interpretations for isotopic data resulting from this method have occurred quite often in previous studies that apply these isotopic data.In order to better elucidate the closure of Sm-Nd in scheelite,the kinetics of Sm and Nd within this mineral lattice were investigated through calculation of diffusion constants presented herein.The following Arrhenius relations were obtained:D_(Nd)=4.00exp(-438 kJ·mol^(–1)/RT)cm^(2)/s D_(Sm)=1.85exp(-427 kJ·mol^(–1)/RT)cm^(2)/s showing diffusion rate of Nd is near identical to Sm in scheelite when at the same temperature.However,compared to other rare earth elements(REEs),which have markedly different atomic radii to either Nd or Sm,these are shown to exhibit a great variation in diffusivities.The observed trends in our data are in excellent agreement with the diffusion characteristics of REEs in other tetragonal ABO4 minerals,indicating that ionic radius is a key constraint to the diffusivity of REEs in the various crystal lattices.With this in mind,the same substitution mechanism and a very slight discrepancy in radii will allow us to infer that significant Sm/Nd diffusional fractionation in scheelite is unlikely to occur during most geological processes.Based upon the diffusion data determined herein,Sm and Nd closure temperatures and retention times in scheelite are discussed in terms of diffusion dynamics.Those results suggest that closure temperatures for Sm-Nd within this mineral are relatively high in contrast to the temperature ranges of ore-formation responsible for scheelite-related deposits,and any later thermal environments.It is likely,therefore,that relevant isotopic information could be easily retained under most geological conditions,since initial crystallization of the scheelite.In addition,comparison of this mineral-element pair over a range of temperatures with some other common minerals used as geochronometers(e.g.,zircon and apatite)indicates that Sm-Nd system has a slower diffusive rate in scheelite than for Sr in apatite or Ar in quartz,and only a little faster than for Pb in zircon.It should be noted,within most hydrothermal deposits where zircon has crystallized,its size is typically no more than 100μm,whereas scheelite commonly occurs as macroscopic grains.For this reason,the larger dimensions of scheelite would provide a robust Sm-Nd system more able to resist perturbations,relating to any later thermal process.As such Sm-Nd investigations of scheelite are akin to U-Pb within zircon samples used in isotopic dating.These observations indicate that Sm-Nd age and isotopic information can provide reliable data in all but the most extreme case,especially when data are extracted from macroscopic grains of scheelite that are chosen to be“pristine”(i.e.,free of surface alteration and/or fractures).
文摘Glauconite, as a K-rich authigenic phyllosilicate, is an ideal specimen to obtain the isotopic age of sedimentary rock by means of K-Ar isotopic determination, especially in the application of ancient sedimentary rocks, because of its simultaneous formation with sediments. As for the glauconite in recent marine sediments, there have been also reports on the isotopic age which appears to range from 2 to 70 Myr. It seems that glauconite was terrigenous-allogenic, i.e. it was eroded
基金This research project was supported by the Outstanding Young Scientists Foundation(Grant No 49625304)the Ministry of Sciences and Technology of China(Grant No 95-pre-39).
文摘On the basis of detailed geological studies of the Wulong gold deposit, three metallogenic stages can be identified. With quartz fluid inclusions as an object of study, the authors investigated phase characteristics, compositional variations, temperature and pressure changes, fluid evolution, Pb isotope tracing and Rb-Sr isotopic dating of fluid inclusions entrapped in the above three metallogenic stages. The results show that Na+ is decreased obviously with metallogenic evolution, while K+ and other cations and gas compositions (H2, CO, CH4 and CO2) are increased slightly, and that the temperature and salinity vary in a pulsating manner along with the metallogenic evolution. Inverse calculation of hydrogen and oxygen isotopes indicate that at the first metallogenic stage the fluids were magmatic water, at the second stage they were dominated by magmatic water with a minor amount of meteoric water involved, and at the third stage, i.e., the final stage of metallogenesis, the fluids were composed completely of meteoric water. Its Pb isotopic composition implicates that the ore lead has some affinities with the lead in the Sanguliu granite, but the linear array of the ore-lead isotopic data reflects a mixing source of two end members. It can be deduced that the ore-forming materials and magma were both derived mainly from the same magma source region at depths. The Rb-Sr isotopic ages of the fluid inclusions are 112.2±3.2 Ma, indicating that the Wulong gold deposit was formed during the Yanshanian period.
基金financially supported by the China Postdoctoral Science Foundation(grant 2017M610960)China Geological Survey(grants No.DD20160346 and DD20160055)
文摘Objective In recent years, a series of tungsten prospecting breakthroughs have been made in the southern Qinling Mountains. Especially, a new deposit type with a scheelite -beryl-molybdenite assemblage in the Zhen'an area of Shaanxi Province was firstly discovered. This deposit is currently in a detailed investigation stage, and no detailed study has been yet conducted. This work selected one molybdenite sample from the Be (W) ores in this deposit for Re-Os isotope measurements to define the time limit of tungsten and beryllium mineralization, and to further reveal the ore-forming geological setting of rare metals in the southern Qinling region.
基金supported by the NSFC Project(Grant Nos.42162012 and 42072094)the Open Research Project from the Key Laboratory of Sanjiang Metallogeny and Resources Exploration and Utilization,MNR(Grant No.ZRZYBSJSYS2022001)。
文摘The Dahongshan Fe-Cu(-Au)deposit is a superlarge deposit in the Kangdian metallogenic belt,southwestern China,comprising approximately 458 Mt of Fe ores(40%Fe)and 1.35 Mt Cu.Two main types of Fe-Cu(-Au)mineralization are present in the Dahongshan deposit:(1)early submarine volcanic exhalation and sedimentary mineralization characterized by strata-bound fine-grained magnetite and banded Fe-Cu sulfide(pyrite and chalcopyrite)hosted in the Na-rich metavolcanic rocks;(2)late hydrothermal(-vein)type mineralization characterized by Fe-Cu sulfide veins in the hosted strata or massive coarse-grained magnetite orebodies controlled by faults.While previous studies have focused primarily on the early submarine volcanic and sedimentary mineralization of the deposit,data related to late hydrothermal mineralization is lacking.In order to establish the metallogenic age and ore-forming material source of the late hydrothermal(-vein)type mineralization,this paper reports the Re-Os dating of molybdenite from the late hydrothermal vein Fe-Cu orebody and H,O,S,and Pb isotopic compositions of the hydrothermal quartz-sulfide veins.The primary aim of this study was to establish the metallogenic age and ore-forming material source of the hydrothermal type orebody.Results show that the molybdenite separated from quartz-sulfide veins has a Re-Os isochron age of 831±11 Ma,indicating that the Dahongshan Fe-Cu deposit experienced hydrothermal superimposed mineralization in Neoproterozoic.The molybdenite has a Re concentration of 99.7-382.4 ppm,indicating that the Re of the hydrothermal vein ores were primarily derived from the mantle.The δ^(34)S values of sulfides from the hydrothermal ores are 2‰-8‰ showing multi-peak tower distribution,suggesting that S in the ore-forming period was primarily derived from magma and partially from calcareous sedimentary rock.Furthermore,the abundance of radioactive Pb increased significantly from ore-bearing strata to layered and hydrothermal vein ores,which may be related to the later hydrothermal transformation.The composition of H and O isotopes within the hydrothermal quartz indicates that the ore-forming fluid is a mixture of magmatic water and a small quantity of water.These results further indicate that the late hydrothermal orebodies were formed by the Neoproterozoic magmatic hydrothermal event,which might be related to the breakup of the Rodinia supercontinent.Mantle derived magmatic hydrothermal fluid extracted ore-forming materials from the metavolcanic rocks of Dahongshan Group and formed the hydrothermal(-vein)type Fe-Cu orebodies by filling and metasomatism.
基金financially supported by China Geological Survey Project(Grant No.DD20220971)。
文摘Located along the southern part of the West Qinling orogenic belt,the Yangshan gold deposit is one of the largest in China.The major gold ores of Yangshan are disseminated in metasedimentary host rocks with minor native gold amounts in stibnite-gold quartz veins.Pyrite and arsenopyrite are the major Au-bearing minerals.Hydrothermal muscovite from gold-bearing quartz veins was dated using the in situ Rb-Sr method to determine the formation age of the Yangshan gold deposit.The Rb-Sr isochron date of the muscovite yielded 210.1±5.6 Ma(MSWD=1.2).This date is near the lower end of the period of the mineralized granitic dykes(210.49-213.10 Ma).Two stages of gold enriching process are recognized in the gold-bearing pyrite:the first is incorporated with the Co,Cu,As,Ni enrichment;and the second is accompanied by Bi,Co,Ni,Pb,Cu,Sb concentration.The in-situ sulfur isotopic values of pyrites show a restrictedΔ34s range of-1.43‰to 2.86‰with a mean value of 0.43‰.Trace-element mapping and in-situ sulfur isotopic analysis of pyrite suggest that the sulfur deposits are likely derived from a magmatic source and likely assimilated by sulfur from the sedimentary bedrock.Thus,magmatism plays a critical role in the formation of the Yangshan gold deposit.
基金financially supported by the Projects of the China Geological Survey(Grant No.12120115027001,121201102000150005-06)Natural Science Foundation of China(Grant No.41272079,41302266)
文摘The South Altyn continental block is an important geological unit of the Altyn Tagh orogenic belt, in which numerous Neoproterozoic granitoids crop out. Granitoids are mainly located in the Paxialayidang-Yaganbuyang area and can provide indispensable information on the dynamics of Rodinia supercontinent aggregation during the Neoproterozoic. Therefore, the study of granitoids can help us understand the formation and evolutionary history of the Altyn Tagh orogenic belt. In this work, we investigated the Yaganbuyang granitic pluton through petrography, geochemistry, zircon U-Pb chronology, and Hf isotope approaches. We obtained the following conclusions: (1) Yaganbuyang granitoids mainly consist of two-mica granite and granodiorite. Geochemical data suggested that these granitoids are peraluminous calc-alkaline or high-K calc-alkaline granite types. Zircon U-Pb data yielded ages of 939~7.1 Ma for granodiorite and ~954 Ma for granitoids, respectively. (2) The ~Hf(t) values of two--mica granite and granodiorite are in the range of-3.93 to +5.30 and -8.64 to +5.19, respectively. The Hf model ages (TDM2) of two-mica granite and granodiorite range from 1.59-.05 Ga and 1.62-2.35 Ga, respectively, indicating that the parental magma of these materials is derived from ancient crust with a portion of juvenUe crust. (3) Granitoids formed in a collisional orogen setting, which may be a response to Rodinia supercontinent convergence during the Neoproterozoic.
基金financially supported by the National Natural Science Foundation of China (Nos. 40573036, 40502011)
文摘The giant Huize Zn-Pb ore field in Yunnan Province, southwestern China, comprises the Qilinchang and Kuangshanchang deposits. The deposits are large in scale (more than 5 Mt of Zn and Pb) and high in grade (average grade of total Zn and Pb is 30%). Reported in this paper are the results of Rb-Sr isotopic dating of sphalerite from this ore field. Two precise ages (223.5±3.9 Ma and 226±6.4 Ma) have been obtained from two isochrons. These two ages are close to the reported ages of native copper mineralizations related to the Emeishan flood basalts in this region, which are 226 Ma to 228 Ma. Previous studies showed that the magnitude of uplift resultant from the Emeishan flood basalts is greater than 1000 m, indicating that the Kuangshanchang and Qilinchang deposits were formed during the same geological event and originated by fluid migration during uplifting resultant from the Emeishan flood basalts.
文摘Keban magmatics consist of plutonic rocks of acidic and intermediate compositions with diffe rent phases. They are the equivalent of surface rocks. In the current study on plutonic rocks, general petrographic features, disequilibrium textures such as skeletal formation in minerals, poikilitic texture, oscillatory zoning, and mineral fragmentation, and growth states are observed. Besides these microscopic properties, the existence of rounded mafic enclaves of various sizes, petrographic synplutonic dykes, and field data support the idea that mafic and felsic magmas are mixed. Keban magmatics have I-type, metaluminous-peraluminous characteristics. Diorites and quartz diorites have low-K tholeiitic features, whereas tonalites have low-K calcalkaline features. Compared with diorites, tonalites are richer in terms of LREE (Rock/ Chondrite);Rb, Sr, and Ba (LILE);and Hf, Zr, Th, and U (HFSE) elements. LILE enrichment, which signals the crustal contamination of mantle- originated magmas, is particularly observable in tonalites. In both rock groups, the negative anomaly of Nb is a sign of similarity of pluton to the subduction zone magma series. Based on the K-Ar geochronology dating of amphibole minerals, the ages of these rocks are found to be 75.65 ± 1.5 and 59.77 ± 1.2 Ma in tonalites and 84.76 ± 1.8 and 84.35 ± 1.7 Ma in diorite and quartz diorites. The 87Sr/86Sr isotope ratios in tonalites are 0.705405 and 0.706053, whereas these ratios are 0.704828 and 0.704754 in dioritic rocks. Pb isotope ratios are similar in both rock types.
基金This project is supported by National Natural Science Foudation of ChinaState Antarctic Committee of China
文摘The Zhongshan Station of China is located in the Larsemann Hills, East Antarctica. Low pressure granulite facies gneisses together with late granites are outcroped in the region. Three biotite samples from a garnet segregation, a syenogranite and a granite-pegmetite were measured with 40Ar/39Ar incremental heating technique. Biotites from the garnet segregation give an 40Ar/39Ar plateau age of 504±1Ma. Biotites from the syenogranite yield an 40Ar/39Ar plateau age of 494 ±1 Ma. Biotites from the granite-pegmatite give an 40 Ar/39 Ar plateay age of 486±1Ma. They verify 500 Ma thermal event called 'Pan African event' by previous K-Ar and Rb-Sr data. They are cooling ages of the biotites when the paleogeotherm of the area droped to the K-Ar closure temperature for biotite.
基金This study was financially supported by the NationalNatural Science Foundation of China grant 49502036;the key project (95-02-007) of Science and Technology of the Ninth Five-Year Plan of the Ministry of Geology and Mineral Resources.
文摘The samples of ductile-rheologic deformational augen granite from the Yunkai uplift area, western Guangdong province, were determined by the whole-rock Sm-Nd, Pb-Pb and Rb-Sr isotopic dating to have an Sm-Nd isochron age of 1414±68 Ma, a Pb-Pb isochron age of 1388±90 Ma and a Rb-Sr isochron age of 490±36 Ma. The first two ages are interpreted as the formation age of this suite of granite and the last age represents the timing of the tectono-thermal event of Caledonian ductile-rheologic shear partial melting. It is indicated that in the study area not only an orogeny took place in the Caledonian, but also a more important tectono-magmatic activity occurred in the Meso-proterozoic there, which may be related to the subduction-collision between the Yangtze block and Cathaysia block.
基金supported by the National Natural Science Foundation of China(Grant No.:41573022)。
文摘As a part of a giant trending fault system in the Asian continent and one where a strong zone of left strikeslip fault is present,the Altyn Orogenic belt(AOB)has become an important focus for research.Magmatic rocks are widely distributed across the AOB.However,many investigations have focused primarily on Paleozoic igneous rocks;discussion of Mesozoic related igneous activity is often ignored.Here we present the result of studies of representative diorite and granite rocks outcropping in the AOB,within the Xinjiang Uygur Autonomous Region,South Altyn,China.We present new zircon LA-ICP-MS U-Pb age,geochemical,and Sr-Nd-Pb-Hf isotopic data for these sample suites,identifying them as typical igneous rocks formed between 238±1.5 and 238.8±1.1 Ma.The rocks that we studied fall into the alkaline series,also enriched in light rare earth elements(LREE),some large ion lithophile elements(LILE;e.g.,Rb,Ba,Sr,and K),Pb,Th and U,and depleted in heavy rare earth elements(HREE),Nb,Ta,Hf,and Ti.The granite and diorite have high initial 87Sr/86Sr ratios(0.7062-0.7114),negativeεNd(t)values(-8.8 to-11.3),εHf(t)values(-8.7 to-18.7),and relatively constant Pb isotopic ratios((206-Pb/204Pb)i=6.74-17.884,(207Pb/204Pb)i=15.51-15.58,and(208Pb/204Pb)i=35.36-38.04),respectively.This suggests that the magmas parental to these rocks were generated from the partial melting of the ancient crust.The parental magmas to these rocks experienced a degree of fractionation of plagioclase,K-feldspar,and hornblende,possibly during rapid magma ascent.Based on these studies,we propose a reasonable model for the origin of the investigated rocks from the Xinjiang Uygur Autonomous Region of South Altyn,which involves crustal thickening,lithospheric extension,and asthenosphere upwelling,that induced crustal melting.
基金This research project was granted jointly by the National Natural Science Foundation of China(Grant No.40073001)the Key Project(97D0072)of Yunnan Provincial Foundation.
文摘Twenty black shale samples, which are free from the influence of weathering, were collected from the Chengjiang Fauna-bearing horizon, central Yunnan Province, yielding a Pb-Pb isochron age of 534±60 Ma. Although this age is younger than both the Rb-Sr isochron age and 40Ar-39Ar age, it should represent the lower isotopic age limit of the Chengjiang Fauna.
基金This work was financially suppo.rted by the National Natural Science Foundation of China (No. 40372038 and No. 40325006) Special Grant of 0il & Gas Research (XQ-2004-07).
文摘Mesozoic bimodal volcanic rocks of basaltic andesite and rhyolite are widely distributed in the Da Hinggan Range, but their petrogenetic relationships and geodynamic implications are rarely constrained. Detailed studies on doleritic and porphyry dikes in the Zhalantun area indicate that they display features of magma mixing, suggesting their coeval formation. In situ zircon U-Pb dating shows that the porphyry was emplaced in the Early Cretaceous with a ^206Pb/^238U age of 130±1 Ma. Zircons from the dolerite also yield an Early Cretaceous emplacement age of 124±2 Ma although some inherited zircons have been identified. These age results indicate that the Early Cretaceous was an important period of magmatism in the Da Hinggan Range. Zircons from porphyry are characterized by positive value of εHf(t) as high as 10.3±0.5 with Hf depleted mantle model age of 349-568 Ma, whereas magmatic zircons from the dolerite have εHf(t) value of 11.0±1.4 with Hf depleted mantel model age of 342-657 Ma, consistent with those from the porphyry. Considering other data on the geological evolution of this area, it is concluded that the mafic magma originated from the partial melting of Paleozoic enriched lithospheric mantle, whereas the felsic magma came from recycling of juvenile crust formed during the Paleozoic. Both of the protoliths are closely related to the subduction of the Paleo-Asian Ocean during the Paleozoic, indicating that the Paleozoic is an important period of large-scale crustal growth in the area.
基金supported by grants from the National Natural Science Foundation of China (40702014)the China Postdoctoral Science Foundation (2008044018,200902580)+1 种基金the Chinese SinoProbe Project (SinoProbe-03-01)the National Nonprofit Institute Research Grant of IMR,GAGS(K1001)
文摘Granitic pegmatites are commonly thought to form by fractional crystallization or by liquid immiscibility of granitic magma; however, these proposals are based mainly on analyses of fluid and melt inclusions. Here, we use the Jiajika pegmatite deposit, the largest spodumene deposit in Asia, as a case study to investigate ore forming processes using isotope dating. Dating of a single granite sample from the Jiajika deposit using multiple methods gave a zircon U-Pb SHRIMP age of 208.4 ~ 3.9 Ma, an 4~Ar/39Ar age for muscovite of 182.9 ~ 1.7 Ma, and an 4~Ar/39Ar age for biotite of 169.9 + 1.6 Ma. Based on these dating results and the 4~Ar/39Ar age of muscovite from the Jiajika pegmatite, a temperature-time cooling track for the Jiajika granite was constructed using closure temperatures of the different isotope systems. This track indicates that the granite cooled over ^-40 m. y., with segregation of the pegmatite fluid from the granitic magma at a temperature of ~700~C. This result suggests that the Jiajika pegmatite formed not by fractional crystallization, but by segregation of an immiscible liquid from the granitic magma. When compared with fractional crystallization, the relatively early timing of segregation of an immiscible liquid from a granitic magma can prevent the precipitation of ore-forming elements during crystallization, and suggests that liquid immiscibility could be an important ore-forming process for rare metal pegmatities. We also conclude that isotope dating is a method that can potentially be used to determine the dominant ore-forming processes that occurred during the formation of granite-related ore deposits, and suggest that this method can be employed to determine the formation history of the W-Sn ore deposits found elsewhere within the Nanling Metallogenic Belt.
文摘The Indosinian post-collisional Wulong pluton intruded into the Mesoproterozoic Fuping Group, South Qinling, central China. In the southern part of the pluton, some mafic enclaves have sharp or gradational contact relationships with the host biotite granodiorite. Geochemistry, zircon LA-ICP MS (laser ablation inductively-coupled plasma mass spectrometry) U-Pb chronology and Sr- Nd-Pb isotope geochemistry of the pluton are reported in this paper. The biotite granodiorite shows close compositional similarities to high-silica adakite. Its chondrite-normalized REE patterns are characterized by strong HREE depletion (Yb = 0.33--0.96 10-6 and Y = 4.77-11.19 ×10^-6), enrichment of Ba (775-1386 x 10-6) and Sr (643-1115 × 10^-6) and high Sr/Y (57.83-159.99) and Y/Yb (10.99-14.32) ratios, as well as insignificant Eu anomalies (6Eu = 0.70-0.83), suggesting a feldspar-poor, garnet±amphibole-rich residual mineral assemblage. The mafic enclaves have higher MgO (4.15- 8.13%), Cr (14.79-371.31 × 10-6), Ni (20.00-224.24× 10^-6) and Nb/Ta (15.42-21.91) than the host granodiorite, implying that they are mantle-derived and might represent underplated mafic magma. Zircon LA-ICP MS dating of the granodiorite yields a ^206pb/^238U weighted mean age of 208±2 Ma (MSWD=0.50, 1σ), which is the age of emplacement of the host biotite granodiorite. This age indicates that the Wulong pluton formed during the late-orogenic or post-collisional stage (〈242±21 Ma) of the South Qinling belt. The host biotite granodiorite displays ^87Sr/^86Sr = 0.7059-0.7062, Isr = 0.7044-- 0.7050,^143Nd/^144Nd = 0.51236-0.51238, εNd(t)= -2.26 to -2.66 to ^206Pb/^204pb = 18.099-18.209, ^207pb/^204pb = 15.873-15.979 and ^208pb/^204pb = 38.973-39.430. Those ratios are similar to those of the Mesoproterozoic Yaolinghe Group in the South Qinling. Furthermore, its Nd isotopic model age (-1.02 Ga) is consistent with the age (-1.1 Ga) of the Yaolinghe Group. Based on the integrated geological and geochemical studies, coupled with previous studies, the authors suggest that the Wulong adakitic biotite granodiorite was probably generated by dehydration melting of the Yaolinghe Group-like thickened mafic crust, triggered by underplating of mafic magma at the boundary of the thickened mafic crust and hot lithospheric mantle, and that the Wulong adakitic biotite granodiorite may have resulted from thinning and delamination of the lower crust or breakoff of the subducting slab of the Mianlue ocean during the Indosinian post-collisional orogenic stage of the Qinling orogenic belt.
基金financially supported by the National Project of Scientific and Technological Support(Grant No:2006BAB01A11)
文摘The Laocheng granitoid pluton is located in the South Qinling tectonic domain of the Qinling orogenic belt,southern Shaanxi Province,and consists chiefly of quartz diorite,granodiorite and monzogranite.A LA-ICP-MS zircon U-Pb isotopic dating,in conjunction with cathodoluminescence images,reveals that the quartz diorite and granodiorite were emplaced from 220 Ma to 216 Ma,while the monzogranite was emplaced at~210 Ma.In-situ zircon Hf isotopic analyses show that theε_(Hf)(t) values of the quartz diorite and granodiorite range from-8.1 to +1.3,and single-stage Hf model ages from 809 Ma to 1171 Ma,while theε_(Hf)(t)values of the monzogranite are-14.5 to +16.7 and single-stage Hf model ages from 189 Ma to 1424 Ma.These Hf isotopic features reveal that the quartz diorite, granodiorite and monzogranite were formed from the mixing of the magmas derived from partial melting of the depleted mantle and the lower continent crustal materials,and there were two stages of continental crust growth during the Neoproterozoic(~800 Ma)and Indosinian(~210 Ma)eras, respectively,in the south Qinling tectonic domain of the Qinling orogrnic belt,Central China.
基金financially supported by the National Natural Science Foundation of China(grants No.41173065 and 40703012)the China Geological Survey(grants No.1212011121075, 12120114020901,12120113094000 and 1212011120332)the Basic Outlay of Scientific Research Work from the Ministry of Science and Technology of the People's Republic of China(grant No.J1403)
文摘The Miyun area of Beijing is located in the northern part of the North China Craton (NCC) and includes a variety of Archean granitoids and metamorphic rocks. Magmatic domains in zircon from a tonalite reveal Early Neoarchean (2752±7 Ma) ages show a small range in εHf(t) from 3.1 to 7.4 and tDM1(Hf) from 2742 to 2823 Ma, similar to their U-Pb ages, indicating derivation from a depleted mantle source only a short time prior to crystallization. SHRIMP zircon ages of granite, gneiss, amphibolite and hornblendite in the Miyun area reveal restricted emplacement ages from 2594 to 2496 Ma. They also record metamorphic events at ca. 2.50 Ga, 2.44 Ga and 1.82 Ga, showing a similar evolutionary history to the widely distributed Late Neoarchean rocks in the NCC. Positive eHf(t) values of 1.5 to 5.9, with model ages younger than 3.0 Ga for magmatic zircon domains from these Late Neoarchean intrusive rocks indicate that they are predominantly derived from juvenile crustal sources and suggest that significant crustal growth occurred in the northern NCC during the Neoarchean. Late Paleoproterozoic metamorphism developed widely in the NCC, not only in the Trans-North China Orogen, but also in areas of Eastern and Western Blocks, which suggest that the late Paleoproterozoic was the assembly of different micro-continents, which resulted in the final consolidation to form the NCC, and related to the development of the Paleo-Mesoproterozoic Columbia or Nuna supercontinent.
基金financially supported by the Tibetan special foundation of China Geological Survey (No.1212011221088 and No.1212011221087)Natural Science Foundation of China (No.41372208 and No.41472054)open foundation of State Key Laboratory of Ore Deposit Geochemistry,Chinese Academy of Sciences (No.201304)
文摘The Jiang Tso ophiolite, situated in the middle segment of the Bangong- Nujiang Suture Zone, is a part of the easternmost Qieli Lake ophiolite subzone and is close to the south of Pung Lake ophiolite. The rock association of Jiang Tso ophiolite is relatively complete and is mainly composed of metamorphic peridotite, gabbro and diabase. Comparing with N-MORB, the ophiolite is high in Mg and low in Ti, K, Na, P, and is depleted in Nb, Ta, Hf, Th and enriched in Rb, Sr and Ba. Geochemical characteristics of the Jiang Tso ophiolite indicate it is of a supra-subduction zone type formed in the spreading ridge of back arc basin. The SHRIMP U-Pb dating of zircons from the gabbro yielded a weighted average age of 188.1±4.1 Ma (MSWD=1.4), indicating the Jiang Tso ophiolite was formed in the late stage of early Jurassic. The Sr, Nd isotopic compositions show that the Tethyan mantle domain is the depleted mantle (DM), with enriched mantle domain II (EMII). They have the same Sr, Nd isotopic composition with the India Ocean MORB type.