期刊文献+
共找到11,388篇文章
< 1 2 250 >
每页显示 20 50 100
Improved k-means clustering algorithm 被引量:16
1
作者 夏士雄 李文超 +2 位作者 周勇 张磊 牛强 《Journal of Southeast University(English Edition)》 EI CAS 2007年第3期435-438,共4页
In allusion to the disadvantage of having to obtain the number of clusters of data sets in advance and the sensitivity to selecting initial clustering centers in the k-means algorithm, an improved k-means clustering a... In allusion to the disadvantage of having to obtain the number of clusters of data sets in advance and the sensitivity to selecting initial clustering centers in the k-means algorithm, an improved k-means clustering algorithm is proposed. First, the concept of a silhouette coefficient is introduced, and the optimal clustering number Kopt of a data set with unknown class information is confirmed by calculating the silhouette coefficient of objects in clusters under different K values. Then the distribution of the data set is obtained through hierarchical clustering and the initial clustering-centers are confirmed. Finally, the clustering is completed by the traditional k-means clustering. By the theoretical analysis, it is proved that the improved k-means clustering algorithm has proper computational complexity. The experimental results of IRIS testing data set show that the algorithm can distinguish different clusters reasonably and recognize the outliers efficiently, and the entropy generated by the algorithm is lower. 展开更多
关键词 clustering k-means algorithm silhouette coefficient
下载PDF
Hybrid Seagull and Whale Optimization Algorithm-Based Dynamic Clustering Protocol for Improving Network Longevity in Wireless Sensor Networks
2
作者 P.Vinoth Kumar K.Venkatesh 《China Communications》 SCIE CSCD 2024年第10期113-131,共19页
Energy efficiency is the prime concern in Wireless Sensor Networks(WSNs) as maximized energy consumption without essentially limits the energy stability and network lifetime. Clustering is the significant approach ess... Energy efficiency is the prime concern in Wireless Sensor Networks(WSNs) as maximized energy consumption without essentially limits the energy stability and network lifetime. Clustering is the significant approach essential for minimizing unnecessary transmission energy consumption with sustained network lifetime. This clustering process is identified as the Non-deterministic Polynomial(NP)-hard optimization problems which has the maximized probability of being solved through metaheuristic algorithms.This adoption of hybrid metaheuristic algorithm concentrates on the identification of the optimal or nearoptimal solutions which aids in better energy stability during Cluster Head(CH) selection. In this paper,Hybrid Seagull and Whale Optimization Algorithmbased Dynamic Clustering Protocol(HSWOA-DCP)is proposed with the exploitation benefits of WOA and exploration merits of SEOA to optimal CH selection for maintaining energy stability with prolonged network lifetime. This HSWOA-DCP adopted the modified version of SEagull Optimization Algorithm(SEOA) to handle the problem of premature convergence and computational accuracy which is maximally possible during CH selection. The inclusion of SEOA into WOA improved the global searching capability during the selection of CH and prevents worst fitness nodes from being selected as CH, since the spiral attacking behavior of SEOA is similar to the bubble-net characteristics of WOA. This CH selection integrates the spiral attacking principles of SEOA and contraction surrounding mechanism of WOA for improving computation accuracy to prevent frequent election process. It also included the strategy of levy flight strategy into SEOA for potentially avoiding premature convergence to attain better trade-off between the rate of exploration and exploitation in a more effective manner. The simulation results of the proposed HSWOADCP confirmed better network survivability rate, network residual energy and network overall throughput on par with the competitive CH selection schemes under different number of data transmission rounds.The statistical analysis of the proposed HSWOA-DCP scheme also confirmed its energy stability with respect to ANOVA test. 展开更多
关键词 clustering energy stability network lifetime seagull optimization algorithm(SEOA) whale optimization algorithm(WOA) wireless sensor networks(WSNs)
下载PDF
Stochastic Ranking Improved Teaching-Learning and Adaptive Grasshopper Optimization Algorithm-Based Clustering Scheme for Augmenting Network Lifetime in WSNs
3
作者 N Tamilarasan SB Lenin +1 位作者 P Mukunthan NC Sendhilkumar 《China Communications》 SCIE CSCD 2024年第9期159-178,共20页
In Wireless Sensor Networks(WSNs),Clustering process is widely utilized for increasing the lifespan with sustained energy stability during data transmission.Several clustering protocols were devised for extending netw... In Wireless Sensor Networks(WSNs),Clustering process is widely utilized for increasing the lifespan with sustained energy stability during data transmission.Several clustering protocols were devised for extending network lifetime,but most of them failed in handling the problem of fixed clustering,static rounds,and inadequate Cluster Head(CH)selection criteria which consumes more energy.In this paper,Stochastic Ranking Improved Teaching-Learning and Adaptive Grasshopper Optimization Algorithm(SRITL-AGOA)-based Clustering Scheme for energy stabilization and extending network lifespan.This SRITL-AGOA selected CH depending on the weightage of factors such as node mobility degree,neighbour's density distance to sink,single-hop or multihop communication and Residual Energy(RE)that directly influences the energy consumption of sensor nodes.In specific,Grasshopper Optimization Algorithm(GOA)is improved through tangent-based nonlinear strategy for enhancing the ability of global optimization.On the other hand,stochastic ranking and violation constraint handling strategies are embedded into Teaching-Learning-based Optimization Algorithm(TLOA)for improving its exploitation tendencies.Then,SR and VCH improved TLOA is embedded into the exploitation phase of AGOA for selecting better CH by maintaining better balance amid exploration and exploitation.Simulation results confirmed that the proposed SRITL-AGOA improved throughput by 21.86%,network stability by 18.94%,load balancing by 16.14%with minimized energy depletion by19.21%,compared to the competitive CH selection approaches. 展开更多
关键词 Adaptive Grasshopper Optimization algorithm(AGOA) cluster Head(CH) network lifetime Teaching-Learning-based Optimization algorithm(TLOA) Wireless Sensor Networks(WSNs)
下载PDF
An efficient enhanced k-means clustering algorithm 被引量:30
4
作者 FAHIM A.M SALEM A.M +1 位作者 TORKEY F.A RAMADAN M.A 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2006年第10期1626-1633,共8页
In k-means clustering, we are given a set of n data points in d-dimensional space R^d and an integer k and the problem is to determine a set of k points in R^d, called centers, so as to minimize the mean squared dista... In k-means clustering, we are given a set of n data points in d-dimensional space R^d and an integer k and the problem is to determine a set of k points in R^d, called centers, so as to minimize the mean squared distance from each data point to its nearest center. In this paper, we present a simple and efficient clustering algorithm based on the k-means algorithm, which we call enhanced k-means algorithm. This algorithm is easy to implement, requiring a simple data structure to keep some information in each iteration to be used in the next iteration. Our experimental results demonstrated that our scheme can improve the computational speed of the k-means algorithm by the magnitude in the total number of distance calculations and the overall time of computation. 展开更多
关键词 clustering algorithms cluster analysis k-means algorithm Data analysis
下载PDF
Method of Modulation Recognition Based on Combination Algorithm of K-Means Clustering and Grading Training SVM 被引量:9
5
作者 Faquan Yang Ling Yang +3 位作者 Dong Wang Peihan Qi Haiyan Wang 《China Communications》 SCIE CSCD 2018年第12期55-63,共9页
For the existing support vector machine, when recognizing more questions, the shortcomings of high computational complexity and low recognition rate under the low SNR are emerged. The characteristic parameter of the s... For the existing support vector machine, when recognizing more questions, the shortcomings of high computational complexity and low recognition rate under the low SNR are emerged. The characteristic parameter of the signal is extracted and optimized by using a clustering algorithm, support vector machine is trained by grading algorithm so as to enhance the rate of convergence, improve the performance of recognition under the low SNR and realize modulation recognition of the signal based on the modulation system of the constellation diagram in this paper. Simulation results show that the average recognition rate based on this algorithm is enhanced over 30% compared with methods that adopting clustering algorithm or support vector machine respectively under the low SNR. The average recognition rate can reach 90% when the SNR is 5 dB, and the method is easy to be achieved so that it has broad application prospect in the modulating recognition. 展开更多
关键词 clustering algorithm FEATURE extraction GRADING algorithm support VECTOR machine MODULATION recognition
下载PDF
A Nonuniform Clustering Routing Algorithm Based on an Improved K-Means Algorithm 被引量:3
6
作者 Xinliang Tang Man Zhang +3 位作者 Pingping Yu Wei Liu Ning Cao Yunfeng Xu 《Computers, Materials & Continua》 SCIE EI 2020年第9期1725-1739,共15页
In a large-scale wireless sensor network(WSN),densely distributed sensor nodes process a large amount of data.The aggregation of data in a network can consume a great amount of energy.To balance and reduce the energy ... In a large-scale wireless sensor network(WSN),densely distributed sensor nodes process a large amount of data.The aggregation of data in a network can consume a great amount of energy.To balance and reduce the energy consumption of nodes in a WSN and extend the network life,this paper proposes a nonuniform clustering routing algorithm based on the improved K-means algorithm.The algorithm uses a clustering method to form and optimize clusters,and it selects appropriate cluster heads to balance network energy consumption and extend the life cycle of the WSN.To ensure that the cluster head(CH)selection in the network is fair and that the location of the selected CH is not concentrated within a certain range,we chose the appropriate CH competition radius.Simulation results show that,compared with LEACH,LEACH-C,and the DEEC clustering algorithm,this algorithm can effectively balance the energy consumption of the CH and extend the network life. 展开更多
关键词 WSN node energy consumption nonuniform clustering routing algorithm
下载PDF
Hybrid Genetic Algorithm with K-Means for Clustering Problems 被引量:1
7
作者 Ahamed Al Malki Mohamed M. Rizk +1 位作者 M. A. El-Shorbagy A. A. Mousa 《Open Journal of Optimization》 2016年第2期71-83,共14页
The K-means method is one of the most widely used clustering methods and has been implemented in many fields of science and technology. One of the major problems of the k-means algorithm is that it may produce empty c... The K-means method is one of the most widely used clustering methods and has been implemented in many fields of science and technology. One of the major problems of the k-means algorithm is that it may produce empty clusters depending on initial center vectors. Genetic Algorithms (GAs) are adaptive heuristic search algorithm based on the evolutionary principles of natural selection and genetics. This paper presents a hybrid version of the k-means algorithm with GAs that efficiently eliminates this empty cluster problem. Results of simulation experiments using several data sets prove our claim. 展开更多
关键词 cluster Analysis Genetic algorithm k-mEANS
下载PDF
Development of slope mass rating system using K-means and fuzzy c-means clustering algorithms 被引量:1
8
作者 Jalali Zakaria 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2016年第6期959-966,共8页
Classification systems such as Slope Mass Rating(SMR) are currently being used to undertake slope stability analysis. In SMR classification system, data is allocated to certain classes based on linguistic and experien... Classification systems such as Slope Mass Rating(SMR) are currently being used to undertake slope stability analysis. In SMR classification system, data is allocated to certain classes based on linguistic and experience-based criteria. In order to eliminate linguistic criteria resulted from experience-based judgments and account for uncertainties in determining class boundaries developed by SMR system,the system classification results were corrected using two clustering algorithms, namely K-means and fuzzy c-means(FCM), for the ratings obtained via continuous and discrete functions. By applying clustering algorithms in SMR classification system, no in-advance experience-based judgment was made on the number of extracted classes in this system, and it was only after all steps of the clustering algorithms were accomplished that new classification scheme was proposed for SMR system under different failure modes based on the ratings obtained via continuous and discrete functions. The results of this study showed that, engineers can achieve more reliable and objective evaluations over slope stability by using SMR system based on the ratings calculated via continuous and discrete functions. 展开更多
关键词 SMR based on continuous functions Slope stability analysis k-means and FCM clustering algorithms Validation of clustering algorithms Sangan iron ore mines
下载PDF
Similarity matrix-based K-means algorithm for text clustering
9
作者 曹奇敏 郭巧 吴向华 《Journal of Beijing Institute of Technology》 EI CAS 2015年第4期566-572,共7页
K-means algorithm is one of the most widely used algorithms in the clustering analysis. To deal with the problem caused by the random selection of initial center points in the traditional al- gorithm, this paper propo... K-means algorithm is one of the most widely used algorithms in the clustering analysis. To deal with the problem caused by the random selection of initial center points in the traditional al- gorithm, this paper proposes an improved K-means algorithm based on the similarity matrix. The im- proved algorithm can effectively avoid the random selection of initial center points, therefore it can provide effective initial points for clustering process, and reduce the fluctuation of clustering results which are resulted from initial points selections, thus a better clustering quality can be obtained. The experimental results also show that the F-measure of the improved K-means algorithm has been greatly improved and the clustering results are more stable. 展开更多
关键词 text clustering k-means algorithm similarity matrix F-MEASURE
下载PDF
A State of Art Analysis of Telecommunication Data by k-Means and k-Medoids Clustering Algorithms
10
作者 T. Velmurugan 《Journal of Computer and Communications》 2018年第1期190-202,共13页
Cluster analysis is one of the major data analysis methods widely used for many practical applications in emerging areas of data mining. A good clustering method will produce high quality clusters with high intra-clus... Cluster analysis is one of the major data analysis methods widely used for many practical applications in emerging areas of data mining. A good clustering method will produce high quality clusters with high intra-cluster similarity and low inter-cluster similarity. Clustering techniques are applied in different domains to predict future trends of available data and its uses for the real world. This research work is carried out to find the performance of two of the most delegated, partition based clustering algorithms namely k-Means and k-Medoids. A state of art analysis of these two algorithms is implemented and performance is analyzed based on their clustering result quality by means of its execution time and other components. Telecommunication data is the source data for this analysis. The connection oriented broadband data is given as input to find the clustering quality of the algorithms. Distance between the server locations and their connection is considered for clustering. Execution time for each algorithm is analyzed and the results are compared with one another. Results found in comparison study are satisfactory for the chosen application. 展开更多
关键词 k-mEANS algorithm k-medoids algorithm DATA clustering Time COMPLEXITY TELECOMMUNICATION DATA
下载PDF
Plant Leaf Diseases Classification Using Improved K-Means Clustering and SVM Algorithm for Segmentation
11
作者 Mona Jamjoom Ahmed Elhadad +1 位作者 Hussein Abulkasim Safia Abbas 《Computers, Materials & Continua》 SCIE EI 2023年第7期367-382,共16页
Several pests feed on leaves,stems,bases,and the entire plant,causing plant illnesses.As a result,it is vital to identify and eliminate the disease before causing any damage to plants.Manually detecting plant disease ... Several pests feed on leaves,stems,bases,and the entire plant,causing plant illnesses.As a result,it is vital to identify and eliminate the disease before causing any damage to plants.Manually detecting plant disease and treating it is pretty challenging in this period.Image processing is employed to detect plant disease since it requires much effort and an extended processing period.The main goal of this study is to discover the disease that affects the plants by creating an image processing system that can recognize and classify four different forms of plant diseases,including Phytophthora infestans,Fusarium graminearum,Puccinia graminis,tomato yellow leaf curl.Therefore,this work uses the Support vector machine(SVM)classifier to detect and classify the plant disease using various steps like image acquisition,Pre-processing,Segmentation,feature extraction,and classification.The gray level co-occurrence matrix(GLCM)and the local binary pattern features(LBP)are used to identify the disease-affected portion of the plant leaf.According to experimental data,the proposed technology can correctly detect and diagnose plant sickness with a 97.2 percent accuracy. 展开更多
关键词 SVM machine learning GLCM algorithm k-means clustering LBP
下载PDF
An Improved K-Means Algorithm Based on Initial Clustering Center Optimization
12
作者 LI Taihao NAREN Tuya +2 位作者 ZHOU Jianshe REN Fuji LIU Shupeng 《ZTE Communications》 2017年第B12期43-46,共4页
The K-means algorithm is widely known for its simplicity and fastness in text clustering.However,the selection of the initial clus?tering center with the traditional K-means algorithm is some random,and therefore,the ... The K-means algorithm is widely known for its simplicity and fastness in text clustering.However,the selection of the initial clus?tering center with the traditional K-means algorithm is some random,and therefore,the fluctuations and instability of the clustering results are strongly affected by the initial clustering center.This paper proposed an algorithm to select the initial clustering center to eliminate the uncertainty of central point selection.The experiment results show that the improved K-means clustering algorithm is superior to the traditional algorithm. 展开更多
关键词 clustering k-means algorithm initial clustering center
下载PDF
Clustering analysis algorithm for security supervising data based on semantic description in coal mines 被引量:1
13
作者 孟凡荣 周勇 夏士雄 《Journal of Southeast University(English Edition)》 EI CAS 2008年第3期354-357,共4页
In order to mine production and security information from security supervising data and to ensure security and safety involved in production and decision-making,a clustering analysis algorithm for security supervising... In order to mine production and security information from security supervising data and to ensure security and safety involved in production and decision-making,a clustering analysis algorithm for security supervising data based on a semantic description in coal mines is studied.First,the semantic and numerical-based hybrid description method of security supervising data in coal mines is described.Secondly,the similarity measurement method of semantic and numerical data are separately given and a weight-based hybrid similarity measurement method for the security supervising data based on a semantic description in coal mines is presented.Thirdly,taking the hybrid similarity measurement method as the distance criteria and using a grid methodology for reference,an improved CURE clustering algorithm based on the grid is presented.Finally,the simulation results of a security supervising data set in coal mines validate the efficiency of the algorithm. 展开更多
关键词 semantic description clustering analysis algorithm similarity measurement
下载PDF
Falcon Optimization Algorithm-Based Energy Efficient Communication Protocol for Cluster-Based Vehicular Networks 被引量:1
14
作者 Youseef Alotaibi B.Rajasekar +1 位作者 R.Jayalakshmi Surendran Rajendran 《Computers, Materials & Continua》 SCIE EI 2024年第3期4243-4262,共20页
Rapid development in Information Technology(IT)has allowed several novel application regions like large outdoor vehicular networks for Vehicle-to-Vehicle(V2V)transmission.Vehicular networks give a safe and more effect... Rapid development in Information Technology(IT)has allowed several novel application regions like large outdoor vehicular networks for Vehicle-to-Vehicle(V2V)transmission.Vehicular networks give a safe and more effective driving experience by presenting time-sensitive and location-aware data.The communication occurs directly between V2V and Base Station(BS)units such as the Road Side Unit(RSU),named as a Vehicle to Infrastructure(V2I).However,the frequent topology alterations in VANETs generate several problems with data transmission as the vehicle velocity differs with time.Therefore,the scheme of an effectual routing protocol for reliable and stable communications is significant.Current research demonstrates that clustering is an intelligent method for effectual routing in a mobile environment.Therefore,this article presents a Falcon Optimization Algorithm-based Energy Efficient Communication Protocol for Cluster-based Routing(FOA-EECPCR)technique in VANETS.The FOA-EECPCR technique intends to group the vehicles and determine the shortest route in the VANET.To accomplish this,the FOA-EECPCR technique initially clusters the vehicles using FOA with fitness functions comprising energy,distance,and trust level.For the routing process,the Sparrow Search Algorithm(SSA)is derived with a fitness function that encompasses two variables,namely,energy and distance.A series of experiments have been conducted to exhibit the enhanced performance of the FOA-EECPCR method.The experimental outcomes demonstrate the enhanced performance of the FOA-EECPCR approach over other current methods. 展开更多
关键词 Vehicular networks communication protocol clustering falcon optimization algorithm ROUTING
下载PDF
Scaling up the DBSCAN Algorithm for Clustering Large Spatial Databases Based on Sampling Technique 被引量:9
15
作者 Guan Ji hong 1, Zhou Shui geng 2, Bian Fu ling 3, He Yan xiang 1 1. School of Computer, Wuhan University, Wuhan 430072, China 2.State Key Laboratory of Software Engineering, Wuhan University, Wuhan 430072, China 3.College of Remote Sensin 《Wuhan University Journal of Natural Sciences》 CAS 2001年第Z1期467-473,共7页
Clustering, in data mining, is a useful technique for discovering interesting data distributions and patterns in the underlying data, and has many application fields, such as statistical data analysis, pattern recogni... Clustering, in data mining, is a useful technique for discovering interesting data distributions and patterns in the underlying data, and has many application fields, such as statistical data analysis, pattern recognition, image processing, and etc. We combine sampling technique with DBSCAN algorithm to cluster large spatial databases, and two sampling based DBSCAN (SDBSCAN) algorithms are developed. One algorithm introduces sampling technique inside DBSCAN, and the other uses sampling procedure outside DBSCAN. Experimental results demonstrate that our algorithms are effective and efficient in clustering large scale spatial databases. 展开更多
关键词 spatial databases data mining clustering sampling DBSCAN algorithm
下载PDF
Intuitionistic fuzzy C-means clustering algorithms 被引量:20
16
作者 Zeshui Xu Junjie Wu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第4期580-590,共11页
Intuitionistic fuzzy sets(IFSs) are useful means to describe and deal with vague and uncertain data.An intuitionistic fuzzy C-means algorithm to cluster IFSs is developed.In each stage of the intuitionistic fuzzy C-me... Intuitionistic fuzzy sets(IFSs) are useful means to describe and deal with vague and uncertain data.An intuitionistic fuzzy C-means algorithm to cluster IFSs is developed.In each stage of the intuitionistic fuzzy C-means method the seeds are modified,and for each IFS a membership degree to each of the clusters is estimated.In the end of the algorithm,all the given IFSs are clustered according to the estimated membership degrees.Furthermore,the algorithm is extended for clustering interval-valued intuitionistic fuzzy sets(IVIFSs).Finally,the developed algorithms are illustrated through conducting experiments on both the real-world and simulated data sets. 展开更多
关键词 intuitionistic fuzzy set(IFS) intuitionistic fuzzy Cmeans algorithm clustering interval-valued intuitionistic fuzzy set(IVIFS).
下载PDF
News Text Topic Clustering Optimized Method Based on TF-IDF Algorithm on Spark 被引量:18
17
作者 Zhuo Zhou Jiaohua Qin +3 位作者 Xuyu Xiang Yun Tan Qiang Liu Neal N.Xiong 《Computers, Materials & Continua》 SCIE EI 2020年第1期217-231,共15页
Due to the slow processing speed of text topic clustering in stand-alone architecture under the background of big data,this paper takes news text as the research object and proposes LDA text topic clustering algorithm... Due to the slow processing speed of text topic clustering in stand-alone architecture under the background of big data,this paper takes news text as the research object and proposes LDA text topic clustering algorithm based on Spark big data platform.Since the TF-IDF(term frequency-inverse document frequency)algorithm under Spark is irreversible to word mapping,the mapped words indexes cannot be traced back to the original words.In this paper,an optimized method is proposed that TF-IDF under Spark to ensure the text words can be restored.Firstly,the text feature is extracted by the TF-IDF algorithm combined CountVectorizer proposed in this paper,and then the features are inputted to the LDA(Latent Dirichlet Allocation)topic model for training.Finally,the text topic clustering is obtained.Experimental results show that for large data samples,the processing speed of LDA topic model clustering has been improved based Spark.At the same time,compared with the LDA topic model based on word frequency input,the model proposed in this paper has a reduction of perplexity. 展开更多
关键词 News text topic clustering spark platform countvectorizer algorithm TF-IDF algorithm latent dirichlet allocation model
下载PDF
Method of neural network modulation recognition based on clustering and Polak-Ribiere algorithm 被引量:4
18
作者 Faquan Yang Zan Li +2 位作者 Hongyan Li Haiyan Huang Zhongxian Pan 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2014年第5期742-747,共6页
To improve the recognition rate of signal modulation recognition methods based on the clustering algorithm under the low SNR, a modulation recognition method is proposed. The characteristic parameter of the signal is ... To improve the recognition rate of signal modulation recognition methods based on the clustering algorithm under the low SNR, a modulation recognition method is proposed. The characteristic parameter of the signal is extracted by using a clustering algorithm, the neural network is trained by using the algorithm of variable gradient correction (Polak-Ribiere) so as to enhance the rate of convergence, improve the performance of recognition under the low SNR and realize modulation recognition of the signal based on the modulation system of the constellation diagram. Simulation results show that the recognition rate based on this algorithm is enhanced over 30% compared with the methods that adopt clustering algorithm or neural network based on the back propagation algorithm alone under the low SNR. The recognition rate can reach 90% when the SNR is 4 dB, and the method is easy to be achieved so that it has a broad application prospect in the modulating recognition. 展开更多
关键词 clustering algorithm feature extraction algorithm of Polak-Ribiere neural network (NN) modulation recognition.
下载PDF
Ant colony ATTA clustering algorithm of rock mass structural plane in groups 被引量:9
19
作者 李夕兵 王泽伟 +1 位作者 彭康 刘志祥 《Journal of Central South University》 SCIE EI CAS 2014年第2期709-714,共6页
Based on structural surface normal vector spherical distance and the pole stereographic projection Euclidean distance,two distance functions were established.The cluster analysis of structure surface was conducted by ... Based on structural surface normal vector spherical distance and the pole stereographic projection Euclidean distance,two distance functions were established.The cluster analysis of structure surface was conducted by the use of ATTA clustering methods based on ant colony piles,and Silhouette index was introduced to evaluate the clustering effect.The clustering analysis of the measured data of Sanshandao Gold Mine shows that ant colony ATTA-based clustering method does better than K-mean clustering analysis.Meanwhile,clustering results of ATTA method based on pole Euclidean distance and ATTA method based on normal vector spherical distance have a great consistence.The clustering results are most close to the pole isopycnic graph.It can efficiently realize grouping of structural plane and determination of the dominant structural surface direction.It is made up for the defects of subjectivity and inaccuracy in icon measurement approach and has great engineering value. 展开更多
关键词 rock mass discontinuity cluster analysis ant colony ATTA algorithm distance function Silhouette index
下载PDF
Agile Satellite Mission Planning via Task Clustering and Double-Layer Tabu Algorithm 被引量:6
20
作者 Yanbin Zhao Bin Du Shuang Li 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第1期235-257,共23页
Satellite observation schedule is investigated in this paper.A mission planning algorithm of task clustering is proposed to improve the observation efficiency of agile satellite.The newly developed method can make the... Satellite observation schedule is investigated in this paper.A mission planning algorithm of task clustering is proposed to improve the observation efficiency of agile satellite.The newly developed method can make the satellite observe more targets and therefore save observation resources.First,for the densely distributed target points,a preprocessing scheme based on task clustering is proposed.The target points are clustered according to the distance condition.Second,the local observation path is generated by Tabu algorithm in the inner layer of cluster regions.Third,considering the scatter and cluster sets,the global observation path is obtained by adopting Tabu algorithm in the outer layer.Simulation results show that the algorithm can effectively reduce the task planning time of large-scale point targets while ensuring the optimal solution quality. 展开更多
关键词 Mission planning agile satellite task clustering Tabu algorithm
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部