With the development of global position system(GPS),wireless technology and location aware services,it is possible to collect a large quantity of trajectory data.In the field of data mining for moving objects,the pr...With the development of global position system(GPS),wireless technology and location aware services,it is possible to collect a large quantity of trajectory data.In the field of data mining for moving objects,the problem of anomaly detection is a hot topic.Based on the development of anomalous trajectory detection of moving objects,this paper introduces the classical trajectory outlier detection(TRAOD) algorithm,and then proposes a density-based trajectory outlier detection(DBTOD) algorithm,which compensates the disadvantages of the TRAOD algorithm that it is unable to detect anomalous defects when the trajectory is local and dense.The results of employing the proposed algorithm to Elk1993 and Deer1995 datasets are also presented,which show the effectiveness of the algorithm.展开更多
An improved clustering algorithm was presented based on density-isoline clustering algorithm. The new algorithm can do a better job than density-isoline clustering when dealing with noise, not having to literately cal...An improved clustering algorithm was presented based on density-isoline clustering algorithm. The new algorithm can do a better job than density-isoline clustering when dealing with noise, not having to literately calculate the cluster centers for the samples batching into clusters instead of one by one. After repeated experiments, the results demonstrate that the improved density-isoline clustering algorithm is significantly more efficiency in clustering with noises and overcomes the drawbacks that traditional algorithm DILC deals with noise and that the efficiency of running time is improved greatly.展开更多
Classification systems such as Slope Mass Rating(SMR) are currently being used to undertake slope stability analysis. In SMR classification system, data is allocated to certain classes based on linguistic and experien...Classification systems such as Slope Mass Rating(SMR) are currently being used to undertake slope stability analysis. In SMR classification system, data is allocated to certain classes based on linguistic and experience-based criteria. In order to eliminate linguistic criteria resulted from experience-based judgments and account for uncertainties in determining class boundaries developed by SMR system,the system classification results were corrected using two clustering algorithms, namely K-means and fuzzy c-means(FCM), for the ratings obtained via continuous and discrete functions. By applying clustering algorithms in SMR classification system, no in-advance experience-based judgment was made on the number of extracted classes in this system, and it was only after all steps of the clustering algorithms were accomplished that new classification scheme was proposed for SMR system under different failure modes based on the ratings obtained via continuous and discrete functions. The results of this study showed that, engineers can achieve more reliable and objective evaluations over slope stability by using SMR system based on the ratings calculated via continuous and discrete functions.展开更多
Outlier detection is an important task in data mining. In fact, it is difficult to find the clustering centers in some sophisticated multidimensional datasets and to measure the deviation degree of each potential outl...Outlier detection is an important task in data mining. In fact, it is difficult to find the clustering centers in some sophisticated multidimensional datasets and to measure the deviation degree of each potential outlier. In this work, an effective outlier detection method based on multi-dimensional clustering and local density(ODBMCLD) is proposed. ODBMCLD firstly identifies the center objects by the local density peak of data objects, and clusters the whole dataset based on the center objects. Then, outlier objects belonging to different clusters will be marked as candidates of abnormal data. Finally, the top N points among these abnormal candidates are chosen as final anomaly objects with high outlier factors. The feasibility and effectiveness of the method are verified by experiments.展开更多
Watermarking system based on quantization index modulation (QIM) is increasingly popular in high payload applications,but it is inherently fragile against amplitude scaling attacks.In order to resist desynchronizati...Watermarking system based on quantization index modulation (QIM) is increasingly popular in high payload applications,but it is inherently fragile against amplitude scaling attacks.In order to resist desynchronization attacks of QIM digital watermarking,a low density parity check (LDPC) code-aided QIM watermarking algorithm is proposed,and the performance of QIM watermarking system can be improved by incorporating LDPC code with message passing estimation/detection framework.Using the theory of iterative estimation and decoding,the watermark signal is decoded by the proposed algorithm through iterative estimation of amplitude scaling parameters and decoding of watermark.The performance of the proposed algorithm is closer to the dirty paper Shannon limit than that of repetition code aided algorithm when the algorithm is attacked by the additive white Gaussian noise.For constant amplitude scaling attacks,the proposed algorithm can obtain the accurate estimation of amplitude scaling parameters.The simulation result shows that the algorithm can obtain similar performance compared to the algorithm without desynchronization.展开更多
针对出租车随意停靠造成城市交通拥堵甚至交通事故的问题,利用成都实际区域的出租车GPS(Global Position System)数据和爬取的POI(Point of Interest)数据,使用DBSCAN(Density-Based Spatial Clustering of Application with Noise)聚...针对出租车随意停靠造成城市交通拥堵甚至交通事故的问题,利用成都实际区域的出租车GPS(Global Position System)数据和爬取的POI(Point of Interest)数据,使用DBSCAN(Density-Based Spatial Clustering of Application with Noise)聚类算法对上下客点进行聚类,得到出租车的载客热点,根据POI的类型划定载客热点区域的类型,对出租车不同时间的出行需求进行分析,进而划分出出租车的固定停车区域。研究结果表明,出租车固定停车区域的设定与出行者的出行需求有关,即将固定停车区域设置在出行者出行需求多的区域,可以满足出行者的不同出行需求。结合出租车载客热点和爬取POI数据划定固定停车区域的方法具有较高的实用性,可为城市交通安全方面提供理论和现实意义。展开更多
构建了系列球形中空结构的纳米线(NW),采用分子动力学(MD)对每个模型300个不同初始态的样本开展拉伸形变模拟。并利用基于密度的噪声应用空间聚类(density-based spatial clustering of applications with noise,DBSCAN)机器学习算法,...构建了系列球形中空结构的纳米线(NW),采用分子动力学(MD)对每个模型300个不同初始态的样本开展拉伸形变模拟。并利用基于密度的噪声应用空间聚类(density-based spatial clustering of applications with noise,DBSCAN)机器学习算法,获得了初始滑移面的位置。基于大数据统计,分析了初始滑移位置分布以及断裂位置分布两者之间的相关性。研究结果表明:当内部中空半径较小时,断裂位置分布形成于塑性形变阶段,初始滑移分布与断裂位置分布之间无显著的相关性;但是对于脆性特征明显的大中空半径的NW,高能内表面诱导产生的滑移面迅速积累,产生颈缩并导致最终的断裂。因此当内部中空结构达到一定尺寸时初始滑移位置的分布与最终断裂位置的分布之间有明确的因果关系。展开更多
基金supported by the Aeronautical Science Foundation of China(20111052010)the Jiangsu Graduates Innovation Project (CXZZ120163)+1 种基金the "333" Project of Jiangsu Provincethe Qing Lan Project of Jiangsu Province
文摘With the development of global position system(GPS),wireless technology and location aware services,it is possible to collect a large quantity of trajectory data.In the field of data mining for moving objects,the problem of anomaly detection is a hot topic.Based on the development of anomalous trajectory detection of moving objects,this paper introduces the classical trajectory outlier detection(TRAOD) algorithm,and then proposes a density-based trajectory outlier detection(DBTOD) algorithm,which compensates the disadvantages of the TRAOD algorithm that it is unable to detect anomalous defects when the trajectory is local and dense.The results of employing the proposed algorithm to Elk1993 and Deer1995 datasets are also presented,which show the effectiveness of the algorithm.
文摘An improved clustering algorithm was presented based on density-isoline clustering algorithm. The new algorithm can do a better job than density-isoline clustering when dealing with noise, not having to literately calculate the cluster centers for the samples batching into clusters instead of one by one. After repeated experiments, the results demonstrate that the improved density-isoline clustering algorithm is significantly more efficiency in clustering with noises and overcomes the drawbacks that traditional algorithm DILC deals with noise and that the efficiency of running time is improved greatly.
文摘Classification systems such as Slope Mass Rating(SMR) are currently being used to undertake slope stability analysis. In SMR classification system, data is allocated to certain classes based on linguistic and experience-based criteria. In order to eliminate linguistic criteria resulted from experience-based judgments and account for uncertainties in determining class boundaries developed by SMR system,the system classification results were corrected using two clustering algorithms, namely K-means and fuzzy c-means(FCM), for the ratings obtained via continuous and discrete functions. By applying clustering algorithms in SMR classification system, no in-advance experience-based judgment was made on the number of extracted classes in this system, and it was only after all steps of the clustering algorithms were accomplished that new classification scheme was proposed for SMR system under different failure modes based on the ratings obtained via continuous and discrete functions. The results of this study showed that, engineers can achieve more reliable and objective evaluations over slope stability by using SMR system based on the ratings calculated via continuous and discrete functions.
基金Project(61362021)supported by the National Natural Science Foundation of ChinaProject(2016GXNSFAA380149)supported by Natural Science Foundation of Guangxi Province,China+1 种基金Projects(2016YJCXB02,2017YJCX34)supported by Innovation Project of GUET Graduate Education,ChinaProject(2011KF11)supported by the Key Laboratory of Cognitive Radio and Information Processing,Ministry of Education,China
文摘Outlier detection is an important task in data mining. In fact, it is difficult to find the clustering centers in some sophisticated multidimensional datasets and to measure the deviation degree of each potential outlier. In this work, an effective outlier detection method based on multi-dimensional clustering and local density(ODBMCLD) is proposed. ODBMCLD firstly identifies the center objects by the local density peak of data objects, and clusters the whole dataset based on the center objects. Then, outlier objects belonging to different clusters will be marked as candidates of abnormal data. Finally, the top N points among these abnormal candidates are chosen as final anomaly objects with high outlier factors. The feasibility and effectiveness of the method are verified by experiments.
基金National Natural Science Foundation of China(No.61272432)Qingdao Science and Technology Development Plan(No.12-1-4-6-(10)-jch)
文摘Watermarking system based on quantization index modulation (QIM) is increasingly popular in high payload applications,but it is inherently fragile against amplitude scaling attacks.In order to resist desynchronization attacks of QIM digital watermarking,a low density parity check (LDPC) code-aided QIM watermarking algorithm is proposed,and the performance of QIM watermarking system can be improved by incorporating LDPC code with message passing estimation/detection framework.Using the theory of iterative estimation and decoding,the watermark signal is decoded by the proposed algorithm through iterative estimation of amplitude scaling parameters and decoding of watermark.The performance of the proposed algorithm is closer to the dirty paper Shannon limit than that of repetition code aided algorithm when the algorithm is attacked by the additive white Gaussian noise.For constant amplitude scaling attacks,the proposed algorithm can obtain the accurate estimation of amplitude scaling parameters.The simulation result shows that the algorithm can obtain similar performance compared to the algorithm without desynchronization.
文摘针对出租车随意停靠造成城市交通拥堵甚至交通事故的问题,利用成都实际区域的出租车GPS(Global Position System)数据和爬取的POI(Point of Interest)数据,使用DBSCAN(Density-Based Spatial Clustering of Application with Noise)聚类算法对上下客点进行聚类,得到出租车的载客热点,根据POI的类型划定载客热点区域的类型,对出租车不同时间的出行需求进行分析,进而划分出出租车的固定停车区域。研究结果表明,出租车固定停车区域的设定与出行者的出行需求有关,即将固定停车区域设置在出行者出行需求多的区域,可以满足出行者的不同出行需求。结合出租车载客热点和爬取POI数据划定固定停车区域的方法具有较高的实用性,可为城市交通安全方面提供理论和现实意义。
文摘构建了系列球形中空结构的纳米线(NW),采用分子动力学(MD)对每个模型300个不同初始态的样本开展拉伸形变模拟。并利用基于密度的噪声应用空间聚类(density-based spatial clustering of applications with noise,DBSCAN)机器学习算法,获得了初始滑移面的位置。基于大数据统计,分析了初始滑移位置分布以及断裂位置分布两者之间的相关性。研究结果表明:当内部中空半径较小时,断裂位置分布形成于塑性形变阶段,初始滑移分布与断裂位置分布之间无显著的相关性;但是对于脆性特征明显的大中空半径的NW,高能内表面诱导产生的滑移面迅速积累,产生颈缩并导致最终的断裂。因此当内部中空结构达到一定尺寸时初始滑移位置的分布与最终断裂位置的分布之间有明确的因果关系。