期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
一种优化的k-NN文本分类算法 被引量:2
1
作者 闫鹏 郑雪峰 +1 位作者 朱建勇 肖赟泓 《计算机科学》 CSCD 北大核心 2009年第10期217-221,共5页
k-NN是经典的文本分类算法之一,在解决概念漂移问题上尤其具有优势,但其运行速度低下的缺点也非常严重,为此它通常借助特征选择降维方法来避免维度灾难、提高运行效率。但特征选择又会引起信息丢失等问题,不利于分类系统整体性能的提高... k-NN是经典的文本分类算法之一,在解决概念漂移问题上尤其具有优势,但其运行速度低下的缺点也非常严重,为此它通常借助特征选择降维方法来避免维度灾难、提高运行效率。但特征选择又会引起信息丢失等问题,不利于分类系统整体性能的提高。从文本向量的稀疏性特点出发,对传统的k-NN算法进行了诸多优化。优化算法简化了欧氏距离分类模型,大大降低了系统的运算开销,使运行效率有了质的提高。此外,优化算法还舍弃了特征选择预处理过程,从而可以完全避免因特征选择而引起的诸多不利问题,其分类性能也远远超出了普通k-NN。实验显示,优化算法在性能与效率双方面都有非常优秀的表现,它为传统的k-NN算法注入了新的活力,并可以在解决概念漂移等问题上发挥更大的作用。 展开更多
关键词 文本分类 特征选择 k-nn分类法 概念漂移
下载PDF
基于文本的分类方法研究 被引量:1
2
作者 陈鑫 《电脑开发与应用》 2003年第7期4-5,共2页
讨论了几种基于文本的分类技术的原理和方法 ,基于语义网络的概念推理网利用关键概念和其他概念间的相互关系 ,模拟人脑的推理思维模式 ,将文档分类、模式匹配转化为一个文档匹配的推理过程 ,实现文本分类。比较了这几种方法 。
关键词 文本分类 语义网络 贝页斯算法 k-nn分类法 概念推理 分类技术 互联网技术 文本信息处理
下载PDF
THRFuzzy:Tangential holoentropy-enabled rough fuzzy classifier to classification of evolving data streams 被引量:1
3
作者 Jagannath E.Nalavade T.Senthil Murugan 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第8期1789-1800,共12页
The rapid developments in the fields of telecommunication, sensor data, financial applications, analyzing of data streams, and so on, increase the rate of data arrival, among which the data mining technique is conside... The rapid developments in the fields of telecommunication, sensor data, financial applications, analyzing of data streams, and so on, increase the rate of data arrival, among which the data mining technique is considered a vital process. The data analysis process consists of different tasks, among which the data stream classification approaches face more challenges than the other commonly used techniques. Even though the classification is a continuous process, it requires a design that can adapt the classification model so as to adjust the concept change or the boundary change between the classes. Hence, we design a novel fuzzy classifier known as THRFuzzy to classify new incoming data streams. Rough set theory along with tangential holoentropy function helps in the designing the dynamic classification model. The classification approach uses kernel fuzzy c-means(FCM) clustering for the generation of the rules and tangential holoentropy function to update the membership function. The performance of the proposed THRFuzzy method is verified using three datasets, namely skin segmentation, localization, and breast cancer datasets, and the evaluated metrics, accuracy and time, comparing its performance with HRFuzzy and adaptive k-NN classifiers. The experimental results conclude that THRFuzzy classifier shows better classification results providing a maximum accuracy consuming a minimal time than the existing classifiers. 展开更多
关键词 data stream classification fuzzy rough set tangential holoentropy concept change
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部