期刊文献+
共找到516篇文章
< 1 2 26 >
每页显示 20 50 100
Active learning accelerated Monte-Carlo simulation based on the modified K-nearest neighbors algorithm and its application to reliability estimations
1
作者 Zhifeng Xu Jiyin Cao +2 位作者 Gang Zhang Xuyong Chen Yushun Wu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第10期306-313,共8页
This paper proposes an active learning accelerated Monte-Carlo simulation method based on the modified K-nearest neighbors algorithm.The core idea of the proposed method is to judge whether or not the output of a rand... This paper proposes an active learning accelerated Monte-Carlo simulation method based on the modified K-nearest neighbors algorithm.The core idea of the proposed method is to judge whether or not the output of a random input point can be postulated through a classifier implemented through the modified K-nearest neighbors algorithm.Compared to other active learning methods resorting to experimental designs,the proposed method is characterized by employing Monte-Carlo simulation for sampling inputs and saving a large portion of the actual evaluations of outputs through an accurate classification,which is applicable for most structural reliability estimation problems.Moreover,the validity,efficiency,and accuracy of the proposed method are demonstrated numerically.In addition,the optimal value of K that maximizes the computational efficiency is studied.Finally,the proposed method is applied to the reliability estimation of the carbon fiber reinforced silicon carbide composite specimens subjected to random displacements,which further validates its practicability. 展开更多
关键词 Active learning Monte-carlo simulation k-nearest neighbors Reliability estimation CLASSIFICATION
下载PDF
GHM-FKNN:a generalized Heronian mean based fuzzy k-nearest neighbor classifier for the stock trend prediction
2
作者 吴振峰 WANG Mengmeng +1 位作者 LAN Tian ZHANG Anyuan 《High Technology Letters》 EI CAS 2023年第2期122-129,共8页
Stock trend prediction is a challenging problem because it involves many variables.Aiming at the problem that some existing machine learning techniques, such as random forest(RF), probabilistic random forest(PRF), k-n... Stock trend prediction is a challenging problem because it involves many variables.Aiming at the problem that some existing machine learning techniques, such as random forest(RF), probabilistic random forest(PRF), k-nearest neighbor(KNN), and fuzzy KNN(FKNN), have difficulty in accurately predicting the stock trend(uptrend or downtrend) for a given date, a generalized Heronian mean(GHM) based FKNN predictor named GHM-FKNN was proposed.GHM-FKNN combines GHM aggregation function with the ideas of the classical FKNN approach.After evaluation, the comparison results elucidated that GHM-FKNN outperformed the other best existing methods RF, PRF, KNN and FKNN on independent test datasets corresponding to three stocks, namely AAPL, AMZN and NFLX.Compared with RF, PRF, KNN and FKNN, GHM-FKNN achieved the best performance with accuracy of 62.37% for AAPL, 58.25% for AMZN, and 64.10% for NFLX. 展开更多
关键词 stock trend prediction Heronian mean fuzzy k-nearest neighbor(Fknn)
下载PDF
基于密文KNN检索的室内定位隐私保护算法 被引量:1
3
作者 欧锦添 乐燕芬 施伟斌 《数据采集与处理》 CSCD 北大核心 2024年第2期456-470,共15页
在定位请求服务中,如何保护用户的位置隐私和位置服务提供商(Localization service provider,LSP)的数据隐私是关系到WiFi指纹定位应用的一个具有挑战性的问题。基于密文域的K-近邻(K-nearest neighbors,KNN)检索,本文提出了一种适用于... 在定位请求服务中,如何保护用户的位置隐私和位置服务提供商(Localization service provider,LSP)的数据隐私是关系到WiFi指纹定位应用的一个具有挑战性的问题。基于密文域的K-近邻(K-nearest neighbors,KNN)检索,本文提出了一种适用于三方的定位隐私保护算法,能有效提升对LSP指纹信息隐私的保护强度并降低计算开销。服务器和用户分别完成对指纹信息和定位请求的加密,而第三方则基于加密指纹库和加密定位请求,在隐私状态下完成对用户的位置估计。所提算法把各参考点的位置信息随机嵌入指纹,可避免恶意用户获取各参考点的具体位置;进一步利用布隆滤波器在隐藏接入点信息的情况下,第三方可完成参考点的在线匹配,实现对用户隐私状态下的粗定位,可与定位算法结合降低计算开销。在公共数据集和实验室数据集中,对两种算法的安全、开销和定位性能进行了全面的评估。与同类加密算法比较,在不降低定位精度的情况下,进一步增强了对数据隐私的保护。 展开更多
关键词 隐私保护 指纹定位 密文K-近邻检索 布隆滤波器 WIFI
下载PDF
Diagnosis of Disc Space Variation Fault Degree of Transformer Winding Based on K-Nearest Neighbor Algorithm
4
作者 Song Wang Fei Xie +3 位作者 Fengye Yang Shengxuan Qiu Chuang Liu Tong Li 《Energy Engineering》 EI 2023年第10期2273-2285,共13页
Winding is one of themost important components in power transformers.Ensuring the health state of the winding is of great importance to the stable operation of the power system.To efficiently and accurately diagnose t... Winding is one of themost important components in power transformers.Ensuring the health state of the winding is of great importance to the stable operation of the power system.To efficiently and accurately diagnose the disc space variation(DSV)fault degree of transformer winding,this paper presents a diagnostic method of winding fault based on the K-Nearest Neighbor(KNN)algorithmand the frequency response analysis(FRA)method.First,a laboratory winding model is used,and DSV faults with four different degrees are achieved by changing disc space of the discs in the winding.Then,a series of FRA tests are conducted to obtain the FRA results and set up the FRA dataset.Second,ten different numerical indices are utilized to obtain features of FRA curves of faulted winding.Third,the 10-fold cross-validation method is employed to determine the optimal k-value of KNN.In addition,to improve the accuracy of the KNN model,a comparative analysis is made between the accuracy of the KNN algorithm and k-value under four distance functions.After getting the most appropriate distance metric and kvalue,the fault classificationmodel based on theKNN and FRA is constructed and it is used to classify the degrees of DSV faults.The identification accuracy rate of the proposed model is up to 98.30%.Finally,the performance of the model is presented by comparing with the support vector machine(SVM),SVM optimized by the particle swarmoptimization(PSO-SVM)method,and randomforest(RF).The results show that the diagnosis accuracy of the proposed model is the highest and the model can be used to accurately diagnose the DSV fault degrees of the winding. 展开更多
关键词 Transformer winding frequency response analysis(FRA)method k-nearest neighbor(knn) disc space variation(DSV)
下载PDF
基于KNN算法的教学质量评价模型建立
5
作者 张晓东 张晓晓 《宁德师范学院学报(自然科学版)》 2024年第3期324-329,共6页
针对当前教学质量评价存在主观性较强的不足,基于K-最近邻(K-nearest neighbor,KNN)算法,提出教学质量评价模型.确立教学质量评价体系;以教学督导的评价数据为样本数据,通过交叉验证求解最近邻算法参数K的最佳值,从而建立教学质量评价模... 针对当前教学质量评价存在主观性较强的不足,基于K-最近邻(K-nearest neighbor,KNN)算法,提出教学质量评价模型.确立教学质量评价体系;以教学督导的评价数据为样本数据,通过交叉验证求解最近邻算法参数K的最佳值,从而建立教学质量评价模型.模型以专家数据为样本,评价精度高,评价结果具有较高的可靠性,能根据相关指标快速产生评价等级,提高了教学质量评价效率,使教学质量评价更加客观全面. 展开更多
关键词 教学质量评价 K-最近邻(knn)算法 交叉验证
下载PDF
基于PCA-BOA-KNN模型的水下爆炸舰船结构破损评估
6
作者 梁潇帝 刘寅东 《中国舰船研究》 CSCD 北大核心 2024年第3期150-157,共8页
[目的]为解决水下爆炸作用下舰船结构破口损伤评估问题,建立一种基于PCA-BOA-KNN模型的破口预报方法。[方法]首先,分别建立五舱段和七舱段有限元模型,对21组水下爆炸工况进行爆炸仿真分析;然后,基于主成分分析(PCA)法,对加速度峰值、速... [目的]为解决水下爆炸作用下舰船结构破口损伤评估问题,建立一种基于PCA-BOA-KNN模型的破口预报方法。[方法]首先,分别建立五舱段和七舱段有限元模型,对21组水下爆炸工况进行爆炸仿真分析;然后,基于主成分分析(PCA)法,对加速度峰值、速度峰值、位移峰值、应力峰值和超压峰值进行降维处理,得到2个本征特征量;最后,将由主成分分析法得到的结果代入贝叶斯网络优化(BOA)的KNN模型,通过建立的破口预报模型,预测一组工况下舰船不同剖面处的破口情况。[结果]结果显示,通过主成分分析法提取的前2个因子的累计贡献率为85.165%,这2个因子可代表5个特征量的主要信息;基于PCA-BOAKNN模型的破口预报结果与仿真结果基本一致。[结论]所提的预报模型方法对舰船结构破口预报有效,对于不同主尺度船体结构破口预报有一定的参考价值。 展开更多
关键词 结构分析 主成分分析 knn算法 水下爆炸
下载PDF
激光点云线性KNN算法FPGA实现及加速 被引量:1
7
作者 陈小宇 阳梦雪 +1 位作者 李常对 赵鹏程 《应用科学学报》 CAS CSCD 北大核心 2023年第5期831-839,共9页
针对三维激光点云线性K最近邻(K-nearest neighbor, KNN)搜索耗时长的问题,提出了一种利用多处理器片上系统(multi-processor system on chip, MPSoC)现场可编程门阵列(field-programmable gate array,FPGA)实现三维激光点云KNN快速搜... 针对三维激光点云线性K最近邻(K-nearest neighbor, KNN)搜索耗时长的问题,提出了一种利用多处理器片上系统(multi-processor system on chip, MPSoC)现场可编程门阵列(field-programmable gate array,FPGA)实现三维激光点云KNN快速搜索的方法。首先给出了三维激光点云KNN算法的MPSoC FPGA实现框架;然后详细阐述了每个模块的设计思路及实现过程;最后利用MZU15A开发板和天眸16线旋转机械激光雷达搭建了测试平台,完成了三维激光点云KNN算法MPSoC FPGA加速的测试验证。实验结果表明:基于MPSoC FPGA实现的三维激光点云KNN算法能在保证邻近点搜索精度的情况下,减少邻近点搜索耗时。 展开更多
关键词 三维激光点云匹配 K最近邻算法 现场可编程门阵列加速 并行计算
下载PDF
基于不规则区域划分方法的k-Nearest Neighbor查询算法 被引量:1
8
作者 张清清 李长云 +3 位作者 李旭 周玲芳 胡淑新 邹豪杰 《计算机系统应用》 2015年第9期186-190,共5页
随着越来越多的数据累积,对数据处理能力和分析能力的要求也越来越高.传统k-Nearest Neighbor(k NN)查询算法由于其容易导致计算负载整体不均衡的规则区域划分方法及其单个进程或单台计算机运行环境的较低数据处理能力.本文提出并详细... 随着越来越多的数据累积,对数据处理能力和分析能力的要求也越来越高.传统k-Nearest Neighbor(k NN)查询算法由于其容易导致计算负载整体不均衡的规则区域划分方法及其单个进程或单台计算机运行环境的较低数据处理能力.本文提出并详细介绍了一种基于不规则区域划分方法的改进型k NN查询算法,并利用对大规模数据集进行分布式并行计算的模型Map Reduce对该算法加以实现.实验结果与分析表明,Map Reduce框架下基于不规则区域划分方法的k NN查询算法可以获得较高的数据处理效率,并可以较好的支持大数据环境下数据的高效查询. 展开更多
关键词 k-nearest neighbor(k NN)查询算法 不规则区域划分方法 MAP REDUCE 大数据
下载PDF
融入KNN算法的二维数组教学案例设计
9
作者 张红霞 高荣 +1 位作者 徐辉 柯琦 《计算机时代》 2023年第6期142-144,148,共4页
为了让计算机专业学生在专业基础课中尽早接触人工智能中的一些概念和算法,激发学生的学习兴趣,设计了一个融入K-近邻算法(K-Nearest Neighbor,KNN)的二维数组教学案例,并对案例教学实施过程、实践任务分解、案例运用效果等方面进行了... 为了让计算机专业学生在专业基础课中尽早接触人工智能中的一些概念和算法,激发学生的学习兴趣,设计了一个融入K-近邻算法(K-Nearest Neighbor,KNN)的二维数组教学案例,并对案例教学实施过程、实践任务分解、案例运用效果等方面进行了阐述。实践结果表明,使用该案例进行教学有利于提高课程教学质量。 展开更多
关键词 二维数组 knn 教学案例 人工智能
下载PDF
多核CPU环境下的并行KNN算法设计
10
作者 潘峰 苏浩辀 +1 位作者 段艳 闵云霄 《计算机时代》 2023年第7期34-37,共4页
针对KNN算法计算比较耗时的问题,提出将计算任务分解为多个子任务,每个子任务分配给一个线程完成,通过多个线程的并行执行完成工作。将训练集读入一个二维数组,二维数组的每一行只分配给一个线程使用;每个新数据被同时广播给多个线程,... 针对KNN算法计算比较耗时的问题,提出将计算任务分解为多个子任务,每个子任务分配给一个线程完成,通过多个线程的并行执行完成工作。将训练集读入一个二维数组,二维数组的每一行只分配给一个线程使用;每个新数据被同时广播给多个线程,每个线程计算该新数据在自己训练集中的最近邻,并将最近邻反馈给主程序;主程序收集每个线程返回的最近邻,以最近邻中的最佳近邻的类别作为新数据的类别。实验证明该并行设计方案充分利用计算资源,加快了计算速度。 展开更多
关键词 并行knn算法 多线程 二维数组 最佳近邻
下载PDF
RecBERT:Semantic recommendation engine with large language model enhanced query segmentation for k-nearest neighbors ranking retrieval
11
作者 Richard Wu 《Intelligent and Converged Networks》 EI 2024年第1期42-52,共11页
The increasing amount of user traffic on Internet discussion forums has led to a huge amount of unstructured natural language data in the form of user comments.Most modern recommendation systems rely on manual tagging... The increasing amount of user traffic on Internet discussion forums has led to a huge amount of unstructured natural language data in the form of user comments.Most modern recommendation systems rely on manual tagging,relying on administrators to label the features of a class,or story,which a user comment corresponds to.Another common approach is to use pre-trained word embeddings to compare class descriptions for textual similarity,then use a distance metric such as cosine similarity or Euclidean distance to find top k neighbors.However,neither approach is able to fully utilize this user-generated unstructured natural language data,reducing the scope of these recommendation systems.This paper studies the application of domain adaptation on a transformer for the set of user comments to be indexed,and the use of simple contrastive learning for the sentence transformer fine-tuning process to generate meaningful semantic embeddings for the various user comments that apply to each class.In order to match a query containing content from multiple user comments belonging to the same class,the construction of a subquery channel for computing class-level similarity is proposed.This channel uses query segmentation of the aggregate query into subqueries,performing k-nearest neighbors(KNN)search on each individual subquery.RecBERT achieves state-of-the-art performance,outperforming other state-of-the-art models in accuracy,precision,recall,and F1 score for classifying comments between four and eight classes,respectively.RecBERT outperforms the most precise state-of-the-art model(distilRoBERTa)in precision by 6.97%for matching comments between eight classes. 展开更多
关键词 sentence transformer simple contrastive learning large language models query segmentation k-nearest neighbors
原文传递
面向申威架构的KNN并行算法实现与优化 被引量:5
12
作者 王其涵 庞建民 +3 位作者 岳峰 祝迪 沈莉 肖谦 《计算机工程》 CAS CSCD 北大核心 2023年第5期286-294,共9页
K近邻(KNN)是人工智能中最常用的分类算法,其性能提升对于海量数据的整理分析、大数据分类等任务具有重要意义。目前新一代神威超级计算机正处于应用发展的初始阶段,结合新一代申威异构众核处理器的结构特性,充分利用庞大的计算资源实... K近邻(KNN)是人工智能中最常用的分类算法,其性能提升对于海量数据的整理分析、大数据分类等任务具有重要意义。目前新一代神威超级计算机正处于应用发展的初始阶段,结合新一代申威异构众核处理器的结构特性,充分利用庞大的计算资源实现高效的KNN算法是海量数据分析整理的现实需求。根据SW26010pro处理器的结构特性,采用主从加速编程模型实现一种基础版本的KNN并行算法,其将计算核心传输到从核上,实现了线程级并行。分析影响基础并行算法性能的关键因素并提出优化算法SWKNN,不同于基础并行KNN算法的任务划分方式,SWKNN采用任务重划分策略,以避免冗余计算开销。通过数据流水优化、从核间通信优化、二次负载均衡优化等步骤减少不必要的通信开销,从而有效缓解访存压力并进一步提升算法性能。实验结果表明,与串行KNN算法相比,面向申威架构的基础并行KNN算法在SW26010pro处理器的单核组上可以获得最高48倍的加速效果,在同等数据规模下,SWKNN算法较基础并行KNN算法又可以获得最高399倍的加速效果。 展开更多
关键词 异构众核处理器 K近邻算法 并行计算 算法优化 分类性能
下载PDF
Mapping aboveground biomass by integrating geospatial and forest inventory data through a k-nearest neighbor strategy in North Central Mexico 被引量:3
13
作者 Carlos A AGUIRRE-SALADO Eduardo J TREVIO-GARZA +7 位作者 Oscar A AGUIRRE-CALDERóN Javier JIMNEZ-PREZ Marco A GONZLEZ-TAGLE José R VALDZ-LAZALDE Guillermo SNCHEZ-DíAZ Reija HAAPANEN Alejandro I AGUIRRE-SALADO Liliana MIRANDA-ARAGóN 《Journal of Arid Land》 SCIE CSCD 2014年第1期80-96,共17页
As climate change negotiations progress,monitoring biomass and carbon stocks is becoming an important part of the current forest research.Therefore,national governments are interested in developing forest-monitoring s... As climate change negotiations progress,monitoring biomass and carbon stocks is becoming an important part of the current forest research.Therefore,national governments are interested in developing forest-monitoring strategies using geospatial technology.Among statistical methods for mapping biomass,there is a nonparametric approach called k-nearest neighbor(kNN).We compared four variations of distance metrics of the kNN for the spatially-explicit estimation of aboveground biomass in a portion of the Mexican north border of the intertropical zone.Satellite derived,climatic,and topographic predictor variables were combined with the Mexican National Forest Inventory(NFI)data to accomplish the purpose.Performance of distance metrics applied into the kNN algorithm was evaluated using a cross validation leave-one-out technique.The results indicate that the Most Similar Neighbor(MSN)approach maximizes the correlation between predictor and response variables(r=0.9).Our results are in agreement with those reported in the literature.These findings confirm the predictive potential of the MSN approach for mapping forest variables at pixel level under the policy of Reducing Emission from Deforestation and Forest Degradation(REDD+). 展开更多
关键词 k-nearest neighbor Mahalanobis most similar neighbor MODIS BRDF-adjusted reflectance forest inventory the policy of Reducing Emission from Deforestation and Forest Degradation
下载PDF
Real-Time Spreading Thickness Monitoring of High-core Rockfill Dam Based on K-nearest Neighbor Algorithm 被引量:4
14
作者 Denghua Zhong Rongxiang Du +2 位作者 Bo Cui Binping Wu Tao Guan 《Transactions of Tianjin University》 EI CAS 2018年第3期282-289,共8页
During the storehouse surface rolling construction of a core rockfilldam, the spreading thickness of dam face is an important factor that affects the construction quality of the dam storehouse' rolling surface and... During the storehouse surface rolling construction of a core rockfilldam, the spreading thickness of dam face is an important factor that affects the construction quality of the dam storehouse' rolling surface and the overallquality of the entire dam. Currently, the method used to monitor and controlspreading thickness during the dam construction process is artificialsampling check after spreading, which makes it difficult to monitor the entire dam storehouse surface. In this paper, we present an in-depth study based on real-time monitoring and controltheory of storehouse surface rolling construction and obtain the rolling compaction thickness by analyzing the construction track of the rolling machine. Comparatively, the traditionalmethod can only analyze the rolling thickness of the dam storehouse surface after it has been compacted and cannot determine the thickness of the dam storehouse surface in realtime. To solve these problems, our system monitors the construction progress of the leveling machine and employs a real-time spreading thickness monitoring modelbased on the K-nearest neighbor algorithm. Taking the LHK core rockfilldam in Southwest China as an example, we performed real-time monitoring for the spreading thickness and conducted real-time interactive queries regarding the spreading thickness. This approach provides a new method for controlling the spreading thickness of the core rockfilldam storehouse surface. 展开更多
关键词 Core rockfill dam Dam storehouse surface construction Spreading thickness k-nearest neighbor algorithm Real-time monitor
下载PDF
Computational Intelligence Prediction Model Integrating Empirical Mode Decomposition,Principal Component Analysis,and Weighted k-Nearest Neighbor 被引量:2
15
作者 Li Tang He-Ping Pan Yi-Yong Yao 《Journal of Electronic Science and Technology》 CAS CSCD 2020年第4期341-349,共9页
On the basis of machine leaning,suitable algorithms can make advanced time series analysis.This paper proposes a complex k-nearest neighbor(KNN)model for predicting financial time series.This model uses a complex feat... On the basis of machine leaning,suitable algorithms can make advanced time series analysis.This paper proposes a complex k-nearest neighbor(KNN)model for predicting financial time series.This model uses a complex feature extraction process integrating a forward rolling empirical mode decomposition(EMD)for financial time series signal analysis and principal component analysis(PCA)for the dimension reduction.The information-rich features are extracted then input to a weighted KNN classifier where the features are weighted with PCA loading.Finally,prediction is generated via regression on the selected nearest neighbors.The structure of the model as a whole is original.The test results on real historical data sets confirm the effectiveness of the models for predicting the Chinese stock index,an individual stock,and the EUR/USD exchange rate. 展开更多
关键词 Empirical mode decomposition(EMD) k-nearest neighbor(knn) principal component analysis(PCA) time series
下载PDF
The k Nearest Neighbors Estimator of the M-Regression in Functional Statistics 被引量:4
16
作者 Ahmed Bachir Ibrahim Mufrah Almanjahie Mohammed Kadi Attouch 《Computers, Materials & Continua》 SCIE EI 2020年第12期2049-2064,共16页
It is well known that the nonparametric estimation of the regression function is highly sensitive to the presence of even a small proportion of outliers in the data.To solve the problem of typical observations when th... It is well known that the nonparametric estimation of the regression function is highly sensitive to the presence of even a small proportion of outliers in the data.To solve the problem of typical observations when the covariates of the nonparametric component are functional,the robust estimates for the regression parameter and regression operator are introduced.The main propose of the paper is to consider data-driven methods of selecting the number of neighbors in order to make the proposed processes fully automatic.We use thek Nearest Neighbors procedure(kNN)to construct the kernel estimator of the proposed robust model.Under some regularity conditions,we state consistency results for kNN functional estimators,which are uniform in the number of neighbors(UINN).Furthermore,a simulation study and an empirical application to a real data analysis of octane gasoline predictions are carried out to illustrate the higher predictive performances and the usefulness of the kNN approach. 展开更多
关键词 Functional data analysis quantile regression knn method uniform nearest neighbor(UNN)consistency functional nonparametric statistics almost complete convergence rate
下载PDF
Pruned fuzzy K-nearest neighbor classifier for beat classification 被引量:2
17
作者 Muhammad Arif Muhammad Usman Akram Fayyaz-ul-Afsar Amir Minhas 《Journal of Biomedical Science and Engineering》 2010年第4期380-389,共10页
Arrhythmia beat classification is an active area of research in ECG based clinical decision support systems. In this paper, Pruned Fuzzy K-nearest neighbor (PFKNN) classifier is proposed to classify six types of beats... Arrhythmia beat classification is an active area of research in ECG based clinical decision support systems. In this paper, Pruned Fuzzy K-nearest neighbor (PFKNN) classifier is proposed to classify six types of beats present in the MIT-BIH Arrhythmia database. We have tested our classifier on ~ 103100 beats for six beat types present in the database. Fuzzy KNN (FKNN) can be implemented very easily but large number of training examples used for classification can be very time consuming and requires large storage space. Hence, we have proposed a time efficient Arif-Fayyaz pruning algorithm especially suitable for FKNN which can maintain good classification accuracy with appropriate retained ratio of training data. By using Arif-Fayyaz pruning algorithm with Fuzzy KNN, we have achieved a beat classification accuracy of 97% and geometric mean of sensitivity of 94.5% with only 19% of the total training examples. The accuracy and sensitivity is comparable to FKNN when all the training data is used. Principal Component Analysis is used to further reduce the dimension of feature space from eleven to six without compromising the accuracy and sensitivity. PFKNN was found to robust against noise present in the ECG data. 展开更多
关键词 ARRHYTHMIA ECG k-nearest neighbor PRUNING FUZZY Classification
下载PDF
A Short-Term Traffic Flow Forecasting Method Based on a Three-Layer K-Nearest Neighbor Non-Parametric Regression Algorithm 被引量:7
18
作者 Xiyu Pang Cheng Wang Guolin Huang 《Journal of Transportation Technologies》 2016年第4期200-206,共7页
Short-term traffic flow is one of the core technologies to realize traffic flow guidance. In this article, in view of the characteristics that the traffic flow changes repeatedly, a short-term traffic flow forecasting... Short-term traffic flow is one of the core technologies to realize traffic flow guidance. In this article, in view of the characteristics that the traffic flow changes repeatedly, a short-term traffic flow forecasting method based on a three-layer K-nearest neighbor non-parametric regression algorithm is proposed. Specifically, two screening layers based on shape similarity were introduced in K-nearest neighbor non-parametric regression method, and the forecasting results were output using the weighted averaging on the reciprocal values of the shape similarity distances and the most-similar-point distance adjustment method. According to the experimental results, the proposed algorithm has improved the predictive ability of the traditional K-nearest neighbor non-parametric regression method, and greatly enhanced the accuracy and real-time performance of short-term traffic flow forecasting. 展开更多
关键词 Three-Layer Traffic Flow Forecasting k-nearest neighbor Non-Parametric Regression
下载PDF
基于重构误差和多块建模策略的kNN故障监测 被引量:3
19
作者 郑静 熊伟丽 吴晓东 《系统仿真学报》 CAS CSCD 北大核心 2023年第1期95-109,共15页
针对基于k近邻(k-nearest neighbor,kNN)的故障监测算法中,引发故障的异常信息易被正常信息淹没,导致故障检测不及时和报警率低的问题,利用自编码器和多块建模策略提出一种基于重构误差的k NN故障监测方法。该方法利用正常工况数据集训... 针对基于k近邻(k-nearest neighbor,kNN)的故障监测算法中,引发故障的异常信息易被正常信息淹没,导致故障检测不及时和报警率低的问题,利用自编码器和多块建模策略提出一种基于重构误差的k NN故障监测方法。该方法利用正常工况数据集训练自编码器模型,基于该模型进行重构误差提取以解决异常信息易被淹没的问题。进一步考虑微小偏移和振荡等故障特征,采用多块建模策略,对各子块分别计算统计量并融合检测。通过一个数值例子与田纳西-伊斯曼(Tennessee-Eastman,TE)过程进行仿真与分析,结果验证了所提方法的有效性与监测性能的提升。 展开更多
关键词 K近邻 重构误差 故障监测 信息提取 多块建模
下载PDF
Fault Diagnosis in Robot Manipulators Using SVM and KNN 被引量:2
20
作者 D.Maincer Y.Benmahamed +2 位作者 M.Mansour Mosleh Alharthi Sherif S.M.Ghonein 《Intelligent Automation & Soft Computing》 SCIE 2023年第2期1957-1969,共13页
In this paper,Support Vector Machine(SVM)and K-Nearest Neighbor(KNN)based methods are to be applied on fault diagnosis in a robot manipulator.A comparative study between the two classifiers in terms of successfully det... In this paper,Support Vector Machine(SVM)and K-Nearest Neighbor(KNN)based methods are to be applied on fault diagnosis in a robot manipulator.A comparative study between the two classifiers in terms of successfully detecting and isolating the seven classes of sensor faults is considered in this work.For both classifiers,the torque,the position and the speed of the manipulator have been employed as the input vector.However,it is to mention that a large database is needed and used for the training and testing phases.The SVM method used in this paper is based on the Gaussian kernel with the parametersγand the penalty margin parameter“C”,which were adjusted via the PSO algorithm to achieve a maximum accuracy diagnosis.Simulations were carried out on the model of a Selective Compliance Assembly Robot Arm(SCARA)robot manipulator,and the results showed that the Particle Swarm Optimization(PSO)increased the per-formance of the SVM algorithm with the 96.95%accuracy while the KNN algo-rithm achieved a correlation up to 94.62%.These results showed that the SVM algorithm with PSO was more precise than the KNN algorithm when was used in fault diagnosis on a robot manipulator. 展开更多
关键词 Support Vector Machine(SVM) Particle Swarm Optimization(PSO) k-nearest neighbor(knn) fault diagnosis manipulator robot(SCARA)
下载PDF
上一页 1 2 26 下一页 到第
使用帮助 返回顶部