研究一类带非线性算子和梯度项的多参数k-Hessian系统Dirichlet问题,运用Krasnosel’skii-Precup不动点定理获得了该系统非平凡k-允许径向解的存在性。In this paper, we investigate the Dirichlet problem of a k-Hessian system with...研究一类带非线性算子和梯度项的多参数k-Hessian系统Dirichlet问题,运用Krasnosel’skii-Precup不动点定理获得了该系统非平凡k-允许径向解的存在性。In this paper, we investigate the Dirichlet problem of a k-Hessian system with a nonlinear operator and gradients. Several findings concerning the existence of k-admissible radial solutions are established via Krasnosel’skii-Precup fixed point theorem.展开更多
本文对f(x,u)=|z(?)|u|^(p-1)u(l∈R^1,p>1)和f(x,u)=-λ(?)+sum from j=1 to m(A,|x|(?)u(?)),+A|x|^(?)u^P(λ,l_j,P_j,A_j,A,l,P都是常数)证明了半线性椭圆边值问题—△_u=f(x,u),u|(?)=0的k-波节解的唯一性和正解的唯一性,其中Ω...本文对f(x,u)=|z(?)|u|^(p-1)u(l∈R^1,p>1)和f(x,u)=-λ(?)+sum from j=1 to m(A,|x|(?)u(?)),+A|x|^(?)u^P(λ,l_j,P_j,A_j,A,l,P都是常数)证明了半线性椭圆边值问题—△_u=f(x,u),u|(?)=0的k-波节解的唯一性和正解的唯一性,其中Ω={x∈R^N| |x|<R≤+∞}。展开更多
文摘研究一类带非线性算子和梯度项的多参数k-Hessian系统Dirichlet问题,运用Krasnosel’skii-Precup不动点定理获得了该系统非平凡k-允许径向解的存在性。In this paper, we investigate the Dirichlet problem of a k-Hessian system with a nonlinear operator and gradients. Several findings concerning the existence of k-admissible radial solutions are established via Krasnosel’skii-Precup fixed point theorem.
文摘本文对f(x,u)=|z(?)|u|^(p-1)u(l∈R^1,p>1)和f(x,u)=-λ(?)+sum from j=1 to m(A,|x|(?)u(?)),+A|x|^(?)u^P(λ,l_j,P_j,A_j,A,l,P都是常数)证明了半线性椭圆边值问题—△_u=f(x,u),u|(?)=0的k-波节解的唯一性和正解的唯一性,其中Ω={x∈R^N| |x|<R≤+∞}。
基金重庆市前沿与应用基础研究项目资助(cstc2016jcyjA 0521cstc2014jcyjA 40035)+3 种基金重庆三峡学院科学研究项目计划资助(14RC08)Chongqing Cutting-edge and Applied Foundation Research Program(cstc2016jcyj A0521cstc2014jcyj A40035)Chongqing Three Gorges University Science Research Program(14RC08)