In this work,we propose a second-order model for image denoising by employing a novel potential function recently developed in Zhu(J Sci Comput 88:46,2021)for the design of a regularization term.Due to this new second...In this work,we propose a second-order model for image denoising by employing a novel potential function recently developed in Zhu(J Sci Comput 88:46,2021)for the design of a regularization term.Due to this new second-order derivative based regularizer,the model is able to alleviate the staircase effect and preserve image contrast.The augmented Lagrangian method(ALM)is utilized to minimize the associated functional and convergence analysis is established for the proposed algorithm.Numerical experiments are presented to demonstrate the features of the proposed model.展开更多
The progress in medical imaging technology highlights the importance of image quality for effective diagnosis and treatment.Yet,noise during capture and transmission can compromise image accuracy and reliability,compl...The progress in medical imaging technology highlights the importance of image quality for effective diagnosis and treatment.Yet,noise during capture and transmission can compromise image accuracy and reliability,complicating clinical decisions.The rising interest in diffusion models has led to their exploration of denoising images.We present Be-FOI(Better Fluoro Images),a weakly supervised model that uses cine images to denoise fluoroscopic images,both DR types.Trained through precise noise estimation and simulation,BeFOI employs Markov chains to denoise using only the fluoroscopic image as guidance.Our tests show that BeFOI outperforms other methods,reducing noise and enhancing clar-ity and diagnostic utility,making it an effective post-processing tool for medical images.展开更多
In this paper, we present a noise removal technique by combining the P-M model with the LLT model. The combined technique takes full use of the advantage of both filters which is able to preserve edges and simultaneou...In this paper, we present a noise removal technique by combining the P-M model with the LLT model. The combined technique takes full use of the advantage of both filters which is able to preserve edges and simultaneously overcomes the staircase effect. We use a weighting function in our model, and compare this model with the P-M model as well as other fourth-order functional both in theory and numerical experiment.展开更多
Image denoising is the basic problem of image processing. Quaternion wavelet transform is a new kind of multiresolution analysis tools. Image via quaternion wavelet transform, wavelet coefficients both in intrascale a...Image denoising is the basic problem of image processing. Quaternion wavelet transform is a new kind of multiresolution analysis tools. Image via quaternion wavelet transform, wavelet coefficients both in intrascale and in interscale have certain correla- tions. First, according to the correlation of quaternion wavelet coefficients in interscale, non-Ganssian distribution model is used to model its correlations, and the coefficients are divided into important and unimportance coefficients. Then we use the non-Gaussian distribution model to model the important coefficients and its adjacent coefficients, and utilize the MAP method estimate original image wavelet coefficients from noisy coefficients, so as to achieve the purpose of denoising. Experimental results show that our al- gorithm outperforms the other classical algorithms in peak signal-to-noise ratio and visual quality.展开更多
In recent years,image restoration has become a huge subject,and finite hybrid model has been widely used in image denoising because of its easy modeling and strong explanatory results.The gaussian mixture model is the...In recent years,image restoration has become a huge subject,and finite hybrid model has been widely used in image denoising because of its easy modeling and strong explanatory results.The gaussian mixture model is the most common one.The existing image denoising methods usually assume that each component of the natural image is subject to the gaussian mixture model(GMM).However,this approach is not entirely reasonable.It is well known that most natural images are complex and their distribution is not entirely gaussian.As a result,there are still many problems that GMM cannot solve.This paper tries to improve the finite mixture model and introduces the asymmetric gaussian mixture model into it.Since the asymmetric gaussian mixture model can simulate the asymmetric distribution on the basis of the gaussian mixture model,it is more consistent with the natural image data,so the denoising effect of the natural complex image is better.We carried out image denoising experiments under different noise scales and types,and found that the asymmetric gaussian mixture model has better denoising effect and performance.展开更多
The traditional Total-Variation algorithm has a good result to de-noise for noise image of small scale details, but it easily losses the details for the image with rich texture and tiny boundary. In order to solve thi...The traditional Total-Variation algorithm has a good result to de-noise for noise image of small scale details, but it easily losses the details for the image with rich texture and tiny boundary. In order to solve this problem, this paper proposes a Sobel-TV model algorithm for image denoising. It uses TV model to de-noise and uses Sobel algorithm to control smoothness of image, which not only efficiently removes image noise but also simultaneously retail information, such as edge and texture. The experiments demonstrate that the proposed algorithm is simple, practical and generates better SNR, which is an important value to preprocess image.展开更多
Many different effective reflection information are often contaminated by exterior and random noise which concealed in the seismic data.Traditional single or fixed transform is not suit for exploiting their complicate...Many different effective reflection information are often contaminated by exterior and random noise which concealed in the seismic data.Traditional single or fixed transform is not suit for exploiting their complicated characteristics and attenuating the noise.Recent years,a novel method so-called morphological component analysis(MCA)is put forward to separate different geometrical components by amalgamating several irrelevance transforms.According to study the local singular and smooth linear components characteristics of seismic data,we propose a method of suppressing noise by integrating with the advantages of adaptive K-singular value decomposition(K-SVD)and wave atom dictionaries to depict the morphological features diversity of seismic signals.Numerical results indicate that our method can dramatically suppress the undesired noises,preserve the information of geologic body and geological structure and improve the signal-to-noise ratio of the data.We also demonstrate the superior performance of this approach by comparing with other novel dictionaries such as discrete cosine transform(DCT),undecimated discrete wavelet transform(UDWT),or curvelet transform,etc.This algorithm provides new ideas for data processing to advance quality and signal-to-noise ratio of seismic data.展开更多
The efficiency, precision, and denoising capabilities of reconstruction algorithms are critical to seismic data processing. Based on the Fourier-domain projection onto convex sets (POCS) algorithm, we propose an inv...The efficiency, precision, and denoising capabilities of reconstruction algorithms are critical to seismic data processing. Based on the Fourier-domain projection onto convex sets (POCS) algorithm, we propose an inversely proportional threshold model that defines the optimum threshold, in which the descent rate is larger than in the exponential threshold in the large-coefficient section and slower than in the exponential threshold in the small-coefficient section. Thus, the computation efficiency of the POCS seismic reconstruction greatly improves without affecting the reconstructed precision of weak reflections. To improve the flexibility of the inversely proportional threshold, we obtain the optimal threshold by using an adjustable dependent variable in the denominator of the inversely proportional threshold model. For random noise attenuation by completing the missing traces in seismic data reconstruction, we present a weighted reinsertion strategy based on the data-driven model that can be obtained by using the percentage of the data-driven threshold in each iteration in the threshold section. We apply the proposed POCS reconstruction method to 3D synthetic and field data. The results suggest that the inversely proportional threshold model improves the computational efficiency and precision compared with the traditional threshold models; furthermore, the proposed reinserting weight strategy increases the SNR of the reconstructed data.展开更多
In order to decrease the sensitivity of the constant scale parameter, adaptively optimize the scale parameter in the iteration regularization model (IRM) and attain a desirable level of applicability for image denoi...In order to decrease the sensitivity of the constant scale parameter, adaptively optimize the scale parameter in the iteration regularization model (IRM) and attain a desirable level of applicability for image denoising, a novel IRM with the adaptive scale parameter is proposed. First, the classic regularization item is modified and the equation of the adaptive scale parameter is deduced. Then, the initial value of the varying scale parameter is obtained by the trend of the number of iterations and the scale parameter sequence vectors. Finally, the novel iterative regularization method is used for image denoising. Numerical experiments show that compared with the IRM with the constant scale parameter, the proposed method with the varying scale parameter can not only reduce the number of iterations when the scale parameter becomes smaller, but also efficiently remove noise when the scale parameter becomes bigger and well preserve the details of images.展开更多
Diffusion models are effective purification methods,where the noises or adversarial attacks are removed using generative approaches before pre-existing classifiers conducting classification tasks.However,the efficienc...Diffusion models are effective purification methods,where the noises or adversarial attacks are removed using generative approaches before pre-existing classifiers conducting classification tasks.However,the efficiency of diffusion models is still a concern,and existing solutions are based on knowledge distillation which can jeopardize the generation quality because of the small number of generation steps.Hence,we propose TendiffPure as a tensorized and compressed diffusion model for purification.Unlike the knowledge distillation methods,we directly compress U-Nets as backbones of diffusion models using tensor-train decomposition,which reduces the number of parameters and captures more spatial information in multi-dimensional data such as images.The space complexity is reduced from O(N^(2))to O(NR^(2))with R≤4 as the tensor-train rank and N as the number of channels.Experimental results show that TendiffPure can more efficiently obtain high-quality purification results and outperforms the baseline purification methods on CIFAR-10,Fashion-MNIST,and MNIST datasets for two noises and one adversarial attack.展开更多
Denoising of chaotic signal is a challenge work due to its wide-band and noise-like characteristics.The algorithm should make the denoised signal have a high signal to noise ratio and retain the chaotic characteristic...Denoising of chaotic signal is a challenge work due to its wide-band and noise-like characteristics.The algorithm should make the denoised signal have a high signal to noise ratio and retain the chaotic characteristics.We propose a denoising method of chaotic signals based on sparse decomposition and K-singular value decomposition(K-SVD)optimization.The observed signal is divided into segments and decomposed sparsely.The over-complete atomic library is constructed according to the differential equation of chaotic signals.The orthogonal matching pursuit algorithm is used to search the optimal matching atom.The atoms and coefficients are further processed to obtain the globally optimal atoms and coefficients by K-SVD.The simulation results show that the denoised signals have a higher signal to noise ratio and better preserve the chaotic characteristics.展开更多
Successful modeling of hydroenvironmental processes widely relies on quantity and quality of accessible data,and noisy data can affect the modeling performance.On the other hand in training phase of any Artificial Int...Successful modeling of hydroenvironmental processes widely relies on quantity and quality of accessible data,and noisy data can affect the modeling performance.On the other hand in training phase of any Artificial Intelligence(AI) based model,each training data set is usually a limited sample of possible patterns of the process and hence,might not show the behavior of whole population.Accordingly,in the present paper,wavelet-based denoising method was used to smooth hydrological time series.Thereafter,small normally distributed noises with the mean of zero and various standard deviations were generated and added to the smooth time series to form different denoised-jittered data sets.Finally,the obtained pre-processed data were imposed into Artificial Neural Network(ANN) and Adaptive Neuro-Fuzzy Inference System(ANFIS)models for daily runoff-sediment modeling of the Minnesota River.To evaluate the modeling performance,the outcomes were compared with results of multi linear regression(MLR) and Auto Regressive Integrated Moving Average(ARIMA)models.The comparison showed that the proposed data processing approach which serves both denoising and jittering techniques could enhance the performance of ANN and ANFIS based runoffsediment modeling of the case study up to 34%and 25%in the verification phase,respectively.展开更多
文摘In this work,we propose a second-order model for image denoising by employing a novel potential function recently developed in Zhu(J Sci Comput 88:46,2021)for the design of a regularization term.Due to this new second-order derivative based regularizer,the model is able to alleviate the staircase effect and preserve image contrast.The augmented Lagrangian method(ALM)is utilized to minimize the associated functional and convergence analysis is established for the proposed algorithm.Numerical experiments are presented to demonstrate the features of the proposed model.
文摘The progress in medical imaging technology highlights the importance of image quality for effective diagnosis and treatment.Yet,noise during capture and transmission can compromise image accuracy and reliability,complicating clinical decisions.The rising interest in diffusion models has led to their exploration of denoising images.We present Be-FOI(Better Fluoro Images),a weakly supervised model that uses cine images to denoise fluoroscopic images,both DR types.Trained through precise noise estimation and simulation,BeFOI employs Markov chains to denoise using only the fluoroscopic image as guidance.Our tests show that BeFOI outperforms other methods,reducing noise and enhancing clar-ity and diagnostic utility,making it an effective post-processing tool for medical images.
文摘In this paper, we present a noise removal technique by combining the P-M model with the LLT model. The combined technique takes full use of the advantage of both filters which is able to preserve edges and simultaneously overcomes the staircase effect. We use a weighting function in our model, and compare this model with the P-M model as well as other fourth-order functional both in theory and numerical experiment.
基金Supported by Natural Science Foundation of Anhui (No.11040606M06)
文摘Image denoising is the basic problem of image processing. Quaternion wavelet transform is a new kind of multiresolution analysis tools. Image via quaternion wavelet transform, wavelet coefficients both in intrascale and in interscale have certain correla- tions. First, according to the correlation of quaternion wavelet coefficients in interscale, non-Ganssian distribution model is used to model its correlations, and the coefficients are divided into important and unimportance coefficients. Then we use the non-Gaussian distribution model to model the important coefficients and its adjacent coefficients, and utilize the MAP method estimate original image wavelet coefficients from noisy coefficients, so as to achieve the purpose of denoising. Experimental results show that our al- gorithm outperforms the other classical algorithms in peak signal-to-noise ratio and visual quality.
基金This work was partly supported by the National Natural Science Foundation of China under Grants 61672293.
文摘In recent years,image restoration has become a huge subject,and finite hybrid model has been widely used in image denoising because of its easy modeling and strong explanatory results.The gaussian mixture model is the most common one.The existing image denoising methods usually assume that each component of the natural image is subject to the gaussian mixture model(GMM).However,this approach is not entirely reasonable.It is well known that most natural images are complex and their distribution is not entirely gaussian.As a result,there are still many problems that GMM cannot solve.This paper tries to improve the finite mixture model and introduces the asymmetric gaussian mixture model into it.Since the asymmetric gaussian mixture model can simulate the asymmetric distribution on the basis of the gaussian mixture model,it is more consistent with the natural image data,so the denoising effect of the natural complex image is better.We carried out image denoising experiments under different noise scales and types,and found that the asymmetric gaussian mixture model has better denoising effect and performance.
文摘The traditional Total-Variation algorithm has a good result to de-noise for noise image of small scale details, but it easily losses the details for the image with rich texture and tiny boundary. In order to solve this problem, this paper proposes a Sobel-TV model algorithm for image denoising. It uses TV model to de-noise and uses Sobel algorithm to control smoothness of image, which not only efficiently removes image noise but also simultaneously retail information, such as edge and texture. The experiments demonstrate that the proposed algorithm is simple, practical and generates better SNR, which is an important value to preprocess image.
基金sponsored by National Natural Science Foundation of China(No.41672325,41602334)National Key Research and Development Program of China(No.2017YFC0601505).
文摘Many different effective reflection information are often contaminated by exterior and random noise which concealed in the seismic data.Traditional single or fixed transform is not suit for exploiting their complicated characteristics and attenuating the noise.Recent years,a novel method so-called morphological component analysis(MCA)is put forward to separate different geometrical components by amalgamating several irrelevance transforms.According to study the local singular and smooth linear components characteristics of seismic data,we propose a method of suppressing noise by integrating with the advantages of adaptive K-singular value decomposition(K-SVD)and wave atom dictionaries to depict the morphological features diversity of seismic signals.Numerical results indicate that our method can dramatically suppress the undesired noises,preserve the information of geologic body and geological structure and improve the signal-to-noise ratio of the data.We also demonstrate the superior performance of this approach by comparing with other novel dictionaries such as discrete cosine transform(DCT),undecimated discrete wavelet transform(UDWT),or curvelet transform,etc.This algorithm provides new ideas for data processing to advance quality and signal-to-noise ratio of seismic data.
基金supported by the National Natural Science Foundation of China(Nos.U1262207 and 41204101)the National Science and Technology Major Project of China(No.2011ZX05019-006)
文摘The efficiency, precision, and denoising capabilities of reconstruction algorithms are critical to seismic data processing. Based on the Fourier-domain projection onto convex sets (POCS) algorithm, we propose an inversely proportional threshold model that defines the optimum threshold, in which the descent rate is larger than in the exponential threshold in the large-coefficient section and slower than in the exponential threshold in the small-coefficient section. Thus, the computation efficiency of the POCS seismic reconstruction greatly improves without affecting the reconstructed precision of weak reflections. To improve the flexibility of the inversely proportional threshold, we obtain the optimal threshold by using an adjustable dependent variable in the denominator of the inversely proportional threshold model. For random noise attenuation by completing the missing traces in seismic data reconstruction, we present a weighted reinsertion strategy based on the data-driven model that can be obtained by using the percentage of the data-driven threshold in each iteration in the threshold section. We apply the proposed POCS reconstruction method to 3D synthetic and field data. The results suggest that the inversely proportional threshold model improves the computational efficiency and precision compared with the traditional threshold models; furthermore, the proposed reinserting weight strategy increases the SNR of the reconstructed data.
基金The National Natural Science Foundation of China(No.60702069)the Research Project of Department of Education of Zhe-jiang Province (No.20060601)+1 种基金the Natural Science Foundation of Zhe-jiang Province (No.Y1080851)Shanghai International Cooperation onRegion of France (No.06SR07109)
文摘In order to decrease the sensitivity of the constant scale parameter, adaptively optimize the scale parameter in the iteration regularization model (IRM) and attain a desirable level of applicability for image denoising, a novel IRM with the adaptive scale parameter is proposed. First, the classic regularization item is modified and the equation of the adaptive scale parameter is deduced. Then, the initial value of the varying scale parameter is obtained by the trend of the number of iterations and the scale parameter sequence vectors. Finally, the novel iterative regularization method is used for image denoising. Numerical experiments show that compared with the IRM with the constant scale parameter, the proposed method with the varying scale parameter can not only reduce the number of iterations when the scale parameter becomes smaller, but also efficiently remove noise when the scale parameter becomes bigger and well preserve the details of images.
文摘Diffusion models are effective purification methods,where the noises or adversarial attacks are removed using generative approaches before pre-existing classifiers conducting classification tasks.However,the efficiency of diffusion models is still a concern,and existing solutions are based on knowledge distillation which can jeopardize the generation quality because of the small number of generation steps.Hence,we propose TendiffPure as a tensorized and compressed diffusion model for purification.Unlike the knowledge distillation methods,we directly compress U-Nets as backbones of diffusion models using tensor-train decomposition,which reduces the number of parameters and captures more spatial information in multi-dimensional data such as images.The space complexity is reduced from O(N^(2))to O(NR^(2))with R≤4 as the tensor-train rank and N as the number of channels.Experimental results show that TendiffPure can more efficiently obtain high-quality purification results and outperforms the baseline purification methods on CIFAR-10,Fashion-MNIST,and MNIST datasets for two noises and one adversarial attack.
基金National Natural Science Foundation of China(Grant No.61872083)the Natural Science Foundation of Guangdong Province,China(Grant Nos.2017A030310659 and 2019A1515011123).
文摘Denoising of chaotic signal is a challenge work due to its wide-band and noise-like characteristics.The algorithm should make the denoised signal have a high signal to noise ratio and retain the chaotic characteristics.We propose a denoising method of chaotic signals based on sparse decomposition and K-singular value decomposition(K-SVD)optimization.The observed signal is divided into segments and decomposed sparsely.The over-complete atomic library is constructed according to the differential equation of chaotic signals.The orthogonal matching pursuit algorithm is used to search the optimal matching atom.The atoms and coefficients are further processed to obtain the globally optimal atoms and coefficients by K-SVD.The simulation results show that the denoised signals have a higher signal to noise ratio and better preserve the chaotic characteristics.
基金financially supported by a grant from Research Affairs of Najafabad Branch,Islamic Azad University,Iran
文摘Successful modeling of hydroenvironmental processes widely relies on quantity and quality of accessible data,and noisy data can affect the modeling performance.On the other hand in training phase of any Artificial Intelligence(AI) based model,each training data set is usually a limited sample of possible patterns of the process and hence,might not show the behavior of whole population.Accordingly,in the present paper,wavelet-based denoising method was used to smooth hydrological time series.Thereafter,small normally distributed noises with the mean of zero and various standard deviations were generated and added to the smooth time series to form different denoised-jittered data sets.Finally,the obtained pre-processed data were imposed into Artificial Neural Network(ANN) and Adaptive Neuro-Fuzzy Inference System(ANFIS)models for daily runoff-sediment modeling of the Minnesota River.To evaluate the modeling performance,the outcomes were compared with results of multi linear regression(MLR) and Auto Regressive Integrated Moving Average(ARIMA)models.The comparison showed that the proposed data processing approach which serves both denoising and jittering techniques could enhance the performance of ANN and ANFIS based runoffsediment modeling of the case study up to 34%and 25%in the verification phase,respectively.