期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Random seismic noise attenuation by learning-type overcomplete dictionary based on K-singular value decomposition algorithm 被引量:2
1
作者 XU Dexin HAN Liguo +1 位作者 LIU Dongyu WEI Yajie 《Global Geology》 2016年第1期55-60,共6页
The transformation of basic functions is one of the most commonly used techniques for seismic denoising,which employs sparse representation of seismic data in the transform domain. The choice of transform base functio... The transformation of basic functions is one of the most commonly used techniques for seismic denoising,which employs sparse representation of seismic data in the transform domain. The choice of transform base functions has an influence on denoising results. We propose a learning-type overcomplete dictionary based on the K-singular value decomposition( K-SVD) algorithm. To construct the dictionary and use it for random seismic noise attenuation,we replace fixed transform base functions with an overcomplete redundancy function library. Owing to the adaptability to data characteristics,the learning-type dictionary describes essential data characteristics much better than conventional denoising methods. The sparsest representation of signals is obtained by the learning and training of seismic data. By comparing the same seismic data obtained using the learning-type overcomplete dictionary based on K-SVD and the data obtained using other denoising methods,we find that the learning-type overcomplete dictionary based on the K-SVD algorithm represents the seismic data more sparsely,effectively suppressing the random noise and improving the signal-to-noise ratio. 展开更多
关键词 sparse representation seismic denoising signal-to-noise ratio k-singular value decomposition learning-type overcomplete dictionary.
下载PDF
Short-term photovoltaic power prediction using combined K-SVD-OMP and KELM method 被引量:2
2
作者 LI Jun ZHENG Danyang 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2022年第3期320-328,共9页
For photovoltaic power prediction,a kind of sparse representation modeling method using feature extraction techniques is proposed.Firstly,all these factors affecting the photovoltaic power output are regarded as the i... For photovoltaic power prediction,a kind of sparse representation modeling method using feature extraction techniques is proposed.Firstly,all these factors affecting the photovoltaic power output are regarded as the input data of the model.Next,the dictionary learning techniques using the K-mean singular value decomposition(K-SVD)algorithm and the orthogonal matching pursuit(OMP)algorithm are used to obtain the corresponding sparse encoding based on all the input data,i.e.the initial dictionary.Then,to build the global prediction model,the sparse coding vectors are used as the input of the model of the kernel extreme learning machine(KELM).Finally,to verify the effectiveness of the combined K-SVD-OMP and KELM method,the proposed method is applied to a instance of the photovoltaic power prediction.Compared with KELM,SVM and ELM under the same conditions,experimental results show that different combined sparse representation methods achieve better prediction results,among which the combined K-SVD-OMP and KELM method shows better prediction results and modeling accuracy. 展开更多
关键词 photovoltaic power prediction sparse representation K-mean singular value decomposition algorithm(k-svd) kernel extreme learning machine(KELM)
下载PDF
A Novel Rolling Bearing Vibration Impulsive Signals Detection Approach Based on Dictionary Learning 被引量:2
3
作者 Chuan Sun Hongpeng Yin +1 位作者 Yanxia Li Yi Chai 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2021年第6期1188-1198,共11页
The localized faults of rolling bearings can be diagnosed by its vibration impulsive signals.However,it is always a challenge to extract the impulsive feature under background noise and non-stationary conditions.This ... The localized faults of rolling bearings can be diagnosed by its vibration impulsive signals.However,it is always a challenge to extract the impulsive feature under background noise and non-stationary conditions.This paper investigates impulsive signals detection of a single-point defect rolling bearing and presents a novel data-driven detection approach based on dictionary learning.To overcome the effects harmonic and noise components,we propose an autoregressive-minimum entropy deconvolution model to separate harmonic and deconvolve the effect of the transmission path.To address the shortcomings of conventional sparse representation under the changeable operation environment,we propose an approach that combines K-clustering with singular value decomposition(K-SVD)and split-Bregman to extract impulsive components precisely.Via experiments on synthetic signals and real run-to-failure signals,the excellent performance for different impulsive signals detection verifies the effectiveness and robustness of the proposed approach.Meanwhile,a comparison with the state-of-the-art methods is illustrated,which shows that the proposed approach can provide more accurate detected impulsive signals. 展开更多
关键词 Dictionary learning impulsive signals detection Kclustering with singular value decomposition(k-svd) minimum entropy deconvolution rolling bearing signal processing
下载PDF
A Novel Robust Zero-Watermarking Algorithm for Audio Based on Sparse Representation 被引量:1
4
作者 Longting Xu Daiyu Huang +4 位作者 Xing Guo Wei Rao Yunyun Ji Ruoyi Li Xiaochen Lu 《China Communications》 SCIE CSCD 2021年第8期237-248,共12页
Behind the prevalence of multimedia technology,digital copyright disputes are becoming increasingly serious.The digital watermarking prevention technique against the copyright infringement needs to be improved urgentl... Behind the prevalence of multimedia technology,digital copyright disputes are becoming increasingly serious.The digital watermarking prevention technique against the copyright infringement needs to be improved urgently.Among the proposed technologies,zero-watermarking has been favored recently.In order to improve the robustness of the zero-watermarking,a novel robust audio zerowatermarking method based on sparse representation is proposed.The proposed scheme is mainly based on the K-singular value decomposition(K-SVD)algorithm to construct an optimal over complete dictionary from the background audio signal.After that,the orthogonal matching pursuit(OMP)algorithm is used to calculate the sparse coefficient of the segmented test audio and generate the corresponding sparse coefficient matrix.Then,the mean value of absolute sparse coefficients in the sparse matrix of segmented speech is calculated and selected,and then comparing the mean absolute coefficient of segmented speech with the average value of the selected coefficients to realize the embedding of zero-watermarking.Experimental results show that the proposed audio zerowatermarking algorithm based on sparse representation performs effectively in resisting various common attacks.Compared with the baseline works,the proposed method has better robustness. 展开更多
关键词 ZERO-WATERMARKING k-singular value decomposition dictionary learning sparse representtion
下载PDF
Internet Multimedia Traffic Classification from QoS Perspective Using Semi-Supervised Dictionary Learning Models 被引量:2
5
作者 Zaijian Wang Yuning Dong +1 位作者 Shiwen Mao Xinheng Wang 《China Communications》 SCIE CSCD 2017年第10期202-218,共17页
To address the issue of finegrained classification of Internet multimedia traffic from a Quality of Service(QoS) perspective with a suitable granularity, this paper defines a new set of QoS classes and presents a modi... To address the issue of finegrained classification of Internet multimedia traffic from a Quality of Service(QoS) perspective with a suitable granularity, this paper defines a new set of QoS classes and presents a modified K-Singular Value Decomposition(K-SVD) method for multimedia identification. After analyzing several instances of typical Internet multimedia traffic captured in a campus network, this paper defines a new set of QoS classes according to the difference in downstream/upstream rates and proposes a modified K-SVD method that can automatically search for underlying structural patterns in the QoS characteristic space. We define bagQoS-words as the set of specific QoS local patterns, which can be expressed by core QoS characteristics. After the dictionary is constructed with an excess quantity of bag-QoSwords, Locality Constrained Feature Coding(LCFC) features of QoS classes are extracted. By associating a set of characteristics with a percentage of error, an objective function is formulated. In accordance with the modified K-SVD, Internet multimedia traffic can be classified into a corresponding QoS class with a linear Support Vector Machines(SVM) clas-sifier. Our experimental results demonstrate the feasibility of the proposed classification method. 展开更多
关键词 dictionary learning traffic classication multimedia traffic k-singular value decomposition quality of service
下载PDF
Distributed Radar Target Tracking with Low Communication Cost
6
作者 Rui Zhang Xinyu Zhang +1 位作者 Shenghua Zhou Xiaojun Peng 《Journal of Beijing Institute of Technology》 EI CAS 2022年第6期595-604,共10页
In distributed radar,most of existing radar networks operate in the tracking fusion mode which combines radar target tracks for a higher positioning accuracy.However,as the filtering covariance matrix indicating posit... In distributed radar,most of existing radar networks operate in the tracking fusion mode which combines radar target tracks for a higher positioning accuracy.However,as the filtering covariance matrix indicating positioning accuracy often occupies many bits,the communication cost from local sensors to the fusion is not always sufficiently low for some wireless communication chan-nels.This paper studies how to compress data for distributed tracking fusion algorithms.Based on the K-singular value decomposition(K-SVD)algorithm,a sparse coding algorithm is presented to sparsely represent the filtering covariance matrix.Then the least square quantization(LSQ)algo-rithm is used to quantize the data according to the statistical characteristics of the sparse coeffi-cients.Quantized results are then coded with an arithmetic coding method which can further com-press data.Numerical results indicate that this tracking data compression algorithm drops the com-munication bandwidth to 4%at the cost of a 16%root mean squared error(RMSE)loss. 展开更多
关键词 distributed radar distributed tracking fusion data compression k-singular value decomposition(k-svd)algorithm sparse coding least square quantization(LSQ)
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部