Energy efficiency is the prime concern in Wireless Sensor Networks(WSNs) as maximized energy consumption without essentially limits the energy stability and network lifetime. Clustering is the significant approach ess...Energy efficiency is the prime concern in Wireless Sensor Networks(WSNs) as maximized energy consumption without essentially limits the energy stability and network lifetime. Clustering is the significant approach essential for minimizing unnecessary transmission energy consumption with sustained network lifetime. This clustering process is identified as the Non-deterministic Polynomial(NP)-hard optimization problems which has the maximized probability of being solved through metaheuristic algorithms.This adoption of hybrid metaheuristic algorithm concentrates on the identification of the optimal or nearoptimal solutions which aids in better energy stability during Cluster Head(CH) selection. In this paper,Hybrid Seagull and Whale Optimization Algorithmbased Dynamic Clustering Protocol(HSWOA-DCP)is proposed with the exploitation benefits of WOA and exploration merits of SEOA to optimal CH selection for maintaining energy stability with prolonged network lifetime. This HSWOA-DCP adopted the modified version of SEagull Optimization Algorithm(SEOA) to handle the problem of premature convergence and computational accuracy which is maximally possible during CH selection. The inclusion of SEOA into WOA improved the global searching capability during the selection of CH and prevents worst fitness nodes from being selected as CH, since the spiral attacking behavior of SEOA is similar to the bubble-net characteristics of WOA. This CH selection integrates the spiral attacking principles of SEOA and contraction surrounding mechanism of WOA for improving computation accuracy to prevent frequent election process. It also included the strategy of levy flight strategy into SEOA for potentially avoiding premature convergence to attain better trade-off between the rate of exploration and exploitation in a more effective manner. The simulation results of the proposed HSWOADCP confirmed better network survivability rate, network residual energy and network overall throughput on par with the competitive CH selection schemes under different number of data transmission rounds.The statistical analysis of the proposed HSWOA-DCP scheme also confirmed its energy stability with respect to ANOVA test.展开更多
In Wireless Sensor Networks(WSNs),Clustering process is widely utilized for increasing the lifespan with sustained energy stability during data transmission.Several clustering protocols were devised for extending netw...In Wireless Sensor Networks(WSNs),Clustering process is widely utilized for increasing the lifespan with sustained energy stability during data transmission.Several clustering protocols were devised for extending network lifetime,but most of them failed in handling the problem of fixed clustering,static rounds,and inadequate Cluster Head(CH)selection criteria which consumes more energy.In this paper,Stochastic Ranking Improved Teaching-Learning and Adaptive Grasshopper Optimization Algorithm(SRITL-AGOA)-based Clustering Scheme for energy stabilization and extending network lifespan.This SRITL-AGOA selected CH depending on the weightage of factors such as node mobility degree,neighbour's density distance to sink,single-hop or multihop communication and Residual Energy(RE)that directly influences the energy consumption of sensor nodes.In specific,Grasshopper Optimization Algorithm(GOA)is improved through tangent-based nonlinear strategy for enhancing the ability of global optimization.On the other hand,stochastic ranking and violation constraint handling strategies are embedded into Teaching-Learning-based Optimization Algorithm(TLOA)for improving its exploitation tendencies.Then,SR and VCH improved TLOA is embedded into the exploitation phase of AGOA for selecting better CH by maintaining better balance amid exploration and exploitation.Simulation results confirmed that the proposed SRITL-AGOA improved throughput by 21.86%,network stability by 18.94%,load balancing by 16.14%with minimized energy depletion by19.21%,compared to the competitive CH selection approaches.展开更多
Rapid development in Information Technology(IT)has allowed several novel application regions like large outdoor vehicular networks for Vehicle-to-Vehicle(V2V)transmission.Vehicular networks give a safe and more effect...Rapid development in Information Technology(IT)has allowed several novel application regions like large outdoor vehicular networks for Vehicle-to-Vehicle(V2V)transmission.Vehicular networks give a safe and more effective driving experience by presenting time-sensitive and location-aware data.The communication occurs directly between V2V and Base Station(BS)units such as the Road Side Unit(RSU),named as a Vehicle to Infrastructure(V2I).However,the frequent topology alterations in VANETs generate several problems with data transmission as the vehicle velocity differs with time.Therefore,the scheme of an effectual routing protocol for reliable and stable communications is significant.Current research demonstrates that clustering is an intelligent method for effectual routing in a mobile environment.Therefore,this article presents a Falcon Optimization Algorithm-based Energy Efficient Communication Protocol for Cluster-based Routing(FOA-EECPCR)technique in VANETS.The FOA-EECPCR technique intends to group the vehicles and determine the shortest route in the VANET.To accomplish this,the FOA-EECPCR technique initially clusters the vehicles using FOA with fitness functions comprising energy,distance,and trust level.For the routing process,the Sparrow Search Algorithm(SSA)is derived with a fitness function that encompasses two variables,namely,energy and distance.A series of experiments have been conducted to exhibit the enhanced performance of the FOA-EECPCR method.The experimental outcomes demonstrate the enhanced performance of the FOA-EECPCR approach over other current methods.展开更多
Offboard active decoys(OADs)can effectively jam monopulse radars.However,for missiles approaching from a particular direction and distance,the OAD should be placed at a specific location,posing high requirements for t...Offboard active decoys(OADs)can effectively jam monopulse radars.However,for missiles approaching from a particular direction and distance,the OAD should be placed at a specific location,posing high requirements for timing and deployment.To improve the response speed and jamming effect,a cluster of OADs based on an unmanned surface vehicle(USV)is proposed.The formation of the cluster determines the effectiveness of jamming.First,based on the mechanism of OAD jamming,critical conditions are identified,and a method for assessing the jamming effect is proposed.Then,for the optimization of the cluster formation,a mathematical model is built,and a multi-tribe adaptive particle swarm optimization algorithm based on mutation strategy and Metropolis criterion(3M-APSO)is designed.Finally,the formation optimization problem is solved and analyzed using the 3M-APSO algorithm under specific scenarios.The results show that the improved algorithm has a faster convergence rate and superior performance as compared to the standard Adaptive-PSO algorithm.Compared with a single OAD,the optimal formation of USV-OAD cluster effectively fills the blind area and maximizes the use of jamming resources.展开更多
The premise and basis of load modeling are substation load composition inquiries and cluster analyses.However,the traditional kernel fuzzy C-means(KFCM)algorithm is limited by artificial clustering number selection an...The premise and basis of load modeling are substation load composition inquiries and cluster analyses.However,the traditional kernel fuzzy C-means(KFCM)algorithm is limited by artificial clustering number selection and its convergence to local optimal solutions.To overcome these limitations,an improved KFCM algorithm with adaptive optimal clustering number selection is proposed in this paper.This algorithm optimizes the KFCM algorithm by combining the powerful global search ability of genetic algorithm and the robust local search ability of simulated annealing algorithm.The improved KFCM algorithm adaptively determines the ideal number of clusters using the clustering evaluation index ratio.Compared with the traditional KFCM algorithm,the enhanced KFCM algorithm has robust clustering and comprehensive abilities,enabling the efficient convergence to the global optimal solution.展开更多
Several pests feed on leaves,stems,bases,and the entire plant,causing plant illnesses.As a result,it is vital to identify and eliminate the disease before causing any damage to plants.Manually detecting plant disease ...Several pests feed on leaves,stems,bases,and the entire plant,causing plant illnesses.As a result,it is vital to identify and eliminate the disease before causing any damage to plants.Manually detecting plant disease and treating it is pretty challenging in this period.Image processing is employed to detect plant disease since it requires much effort and an extended processing period.The main goal of this study is to discover the disease that affects the plants by creating an image processing system that can recognize and classify four different forms of plant diseases,including Phytophthora infestans,Fusarium graminearum,Puccinia graminis,tomato yellow leaf curl.Therefore,this work uses the Support vector machine(SVM)classifier to detect and classify the plant disease using various steps like image acquisition,Pre-processing,Segmentation,feature extraction,and classification.The gray level co-occurrence matrix(GLCM)and the local binary pattern features(LBP)are used to identify the disease-affected portion of the plant leaf.According to experimental data,the proposed technology can correctly detect and diagnose plant sickness with a 97.2 percent accuracy.展开更多
Recently,the fundamental problem with Hybrid Mobile Ad-hoc Net-works(H-MANETs)is tofind a suitable and secure way of balancing the load through Internet gateways.Moreover,the selection of the gateway and overload of th...Recently,the fundamental problem with Hybrid Mobile Ad-hoc Net-works(H-MANETs)is tofind a suitable and secure way of balancing the load through Internet gateways.Moreover,the selection of the gateway and overload of the network results in packet loss and Delay(DL).For optimal performance,it is important to load balance between different gateways.As a result,a stable load balancing procedure is implemented,which selects gateways based on Fuzzy Logic(FL)and increases the efficiency of the network.In this case,since gate-ways are selected based on the number of nodes,the Energy Consumption(EC)was high.This paper presents a novel Node Quality-based Clustering Algo-rithm(NQCA)based on Fuzzy-Genetic for Cluster Head and Gateway Selection(FGCHGS).This algorithm combines NQCA with the Improved Weighted Clus-tering Algorithm(IWCA).The NQCA algorithm divides the network into clusters based upon node priority,transmission range,and neighbourfidelity.In addition,the simulation results tend to evaluate the performance effectiveness of the FFFCHGS algorithm in terms of EC,packet loss rate(PLR),etc.展开更多
Data clustering is crucial when it comes to data processing and analytics.The new clustering method overcomes the challenge of evaluating and extracting data from big data.Numerical or categorical data can be grouped....Data clustering is crucial when it comes to data processing and analytics.The new clustering method overcomes the challenge of evaluating and extracting data from big data.Numerical or categorical data can be grouped.Existing clustering methods favor numerical data clustering and ignore categorical data clustering.Until recently,the only way to cluster categorical data was to convert it to a numeric representation and then cluster it using current numeric clustering methods.However,these algorithms could not use the concept of categorical data for clustering.Following that,suggestions for expanding traditional categorical data processing methods were made.In addition to expansions,several new clustering methods and extensions have been proposed in recent years.ROCK is an adaptable and straightforward algorithm for calculating the similarity between data sets to cluster them.This paper aims to modify the algo-rithm by creating a parameterized version that takes specific algorithm parameters as input and outputs satisfactory cluster structures.The parameterized ROCK algorithm is the name given to the modified algorithm(P-ROCK).The proposed modification makes the original algorithm moreflexible by using user-defined parameters.A detailed hypothesis was developed later validated with experimental results on real-world datasets using our proposed P-ROCK algorithm.A comparison with the original ROCK algorithm is also provided.Experiment results show that the proposed algorithm is on par with the original ROCK algorithm with an accuracy of 97.9%.The proposed P-ROCK algorithm has improved the runtime and is moreflexible and scalable.展开更多
Wireless Sensor Networks are composed of autonomous sensing devices which are interconnected to form a closed network.This closed network is intended to share sensitive location-centric information from a source node ...Wireless Sensor Networks are composed of autonomous sensing devices which are interconnected to form a closed network.This closed network is intended to share sensitive location-centric information from a source node to the base station through efficient routing mechanisms.The efficiency of the sensor node is energy bounded,acts as a concentrated area for most researchers to offer a solution for the early draining power of sensors.Network management plays a significant role in wireless sensor networks,which was obsessed with the factors like the reliability of the network,resource management,energy-efficient routing,and scalability of services.The topology of the wireless sensor networks acts dri-ven factor for network efficiency which can be effectively maintained by perform-ing the clustering process effectively.More solutions and clustering algorithms have been offered by various researchers,but the concern of reduced efficiency in the routing process and network management still exists.This research paper offers a hybrid algorithm composed of a memetic algorithm which is an enhanced version of a genetic algorithm integrated with the adaptive hill-climbing algorithm for performing energy-efficient clustering process in the wireless sensor networks.The memetic algorithm employs a local searching methodology to mitigate the premature convergence,while the adaptive hill-climbing algorithm is a local search algorithm that persistently migrates towards the increased elevation to determine the peak of the mountain(i.e.,)best cluster head in the wireless sensor networks.The proposed hybrid algorithm is compared with the state of art clus-tering algorithm to prove that the proposed algorithm outperforms in terms of a network life-time,energy consumption,throughput,etc.展开更多
In recent years,the soft subspace clustering algorithm has shown good results for high-dimensional data,which can assign different weights to each cluster class and use weights to measure the contribution of each dime...In recent years,the soft subspace clustering algorithm has shown good results for high-dimensional data,which can assign different weights to each cluster class and use weights to measure the contribution of each dimension in various features.The enhanced soft subspace clustering algorithm combines interclass separation and intraclass tightness information,which has strong results for image segmentation,but the clustering algorithm is vulnerable to noisy data and dependence on the initialized clustering center.However,the clustering algorithmis susceptible to the influence of noisydata and reliance on initializedclustering centers andfalls into a local optimum;the clustering effect is poor for brain MR images with unclear boundaries and noise effects.To address these problems,a soft subspace clustering algorithm for brain MR images based on genetic algorithm optimization is proposed,which combines the generalized noise technique,relaxes the equational weight constraint in the objective function as the boundary constraint,and uses a genetic algorithm as a method to optimize the initialized clustering center.The genetic algorithm finds the best clustering center and reduces the algorithm’s dependence on the initial clustering center.The experiment verifies the robustness of the algorithm,as well as the noise immunity in various ways and shows good results on the common dataset and the brain MR images provided by the Changshu First People’s Hospital with specific high accuracy for clinical medicine.展开更多
In a vehicular ad hoc network(VANET),a massive quantity of data needs to be transmitted on a large scale in shorter time durations.At the same time,vehicles exhibit high velocity,leading to more vehicle disconnections...In a vehicular ad hoc network(VANET),a massive quantity of data needs to be transmitted on a large scale in shorter time durations.At the same time,vehicles exhibit high velocity,leading to more vehicle disconnections.Both of these characteristics result in unreliable data communication in VANET.A vehicle clustering algorithm clusters the vehicles in groups employed in VANET to enhance network scalability and connection reliability.Clustering is considered one of the possible solutions for attaining effectual interaction in VANETs.But one such difficulty was reducing the cluster number under increasing transmitting nodes.This article introduces an Evolutionary Hide Objects Game Optimization based Distance Aware Clustering(EHOGO-DAC)Scheme for VANET.The major intention of the EHOGO-DAC technique is to portion the VANET into distinct sets of clusters by grouping vehicles.In addition,the DHOGO-EAC technique is mainly based on the HOGO algorithm,which is stimulated by old games,and the searching agent tries to identify hidden objects in a given space.The DHOGO-EAC technique derives a fitness function for the clustering process,including the total number of clusters and Euclidean distance.The experimental assessment of the DHOGO-EAC technique was carried out under distinct aspects.The comparison outcome stated the enhanced outcomes of the DHOGO-EAC technique compared to recent approaches.展开更多
At present,the proportion of new energy in the power grid is increasing,and the random fluctuations in power output increase the risk of cascading failures in the power grid.In this paper,we propose a method for ident...At present,the proportion of new energy in the power grid is increasing,and the random fluctuations in power output increase the risk of cascading failures in the power grid.In this paper,we propose a method for identifying high-risk scenarios of interlocking faults in new energy power grids based on a deep embedding clustering(DEC)algorithm and apply it in a risk assessment of cascading failures in different operating scenarios for new energy power grids.First,considering the real-time operation status and system structure of new energy power grids,the scenario cascading failure risk indicator is established.Based on this indicator,the risk of cascading failure is calculated for the scenario set,the scenarios are clustered based on the DEC algorithm,and the scenarios with the highest indicators are selected as the significant risk scenario set.The results of simulations with an example power grid show that our method can effectively identify scenarios with a high risk of cascading failures from a large number of scenarios.展开更多
In allusion to the disadvantage of having to obtain the number of clusters of data sets in advance and the sensitivity to selecting initial clustering centers in the k-means algorithm, an improved k-means clustering a...In allusion to the disadvantage of having to obtain the number of clusters of data sets in advance and the sensitivity to selecting initial clustering centers in the k-means algorithm, an improved k-means clustering algorithm is proposed. First, the concept of a silhouette coefficient is introduced, and the optimal clustering number Kopt of a data set with unknown class information is confirmed by calculating the silhouette coefficient of objects in clusters under different K values. Then the distribution of the data set is obtained through hierarchical clustering and the initial clustering-centers are confirmed. Finally, the clustering is completed by the traditional k-means clustering. By the theoretical analysis, it is proved that the improved k-means clustering algorithm has proper computational complexity. The experimental results of IRIS testing data set show that the algorithm can distinguish different clusters reasonably and recognize the outliers efficiently, and the entropy generated by the algorithm is lower.展开更多
In order to mine production and security information from security supervising data and to ensure security and safety involved in production and decision-making,a clustering analysis algorithm for security supervising...In order to mine production and security information from security supervising data and to ensure security and safety involved in production and decision-making,a clustering analysis algorithm for security supervising data based on a semantic description in coal mines is studied.First,the semantic and numerical-based hybrid description method of security supervising data in coal mines is described.Secondly,the similarity measurement method of semantic and numerical data are separately given and a weight-based hybrid similarity measurement method for the security supervising data based on a semantic description in coal mines is presented.Thirdly,taking the hybrid similarity measurement method as the distance criteria and using a grid methodology for reference,an improved CURE clustering algorithm based on the grid is presented.Finally,the simulation results of a security supervising data set in coal mines validate the efficiency of the algorithm.展开更多
As a mainstream research direction in the field of image segmentation,medical image segmentation plays a key role in the quantification of lesions,three-dimensional reconstruction,region of interest extraction and so ...As a mainstream research direction in the field of image segmentation,medical image segmentation plays a key role in the quantification of lesions,three-dimensional reconstruction,region of interest extraction and so on.Compared with natural images,medical images have a variety of modes.Besides,the emphasis of information which is conveyed by images of different modes is quite different.Because it is time-consuming and inefficient to manually segment medical images only by professional and experienced doctors.Therefore,large quantities of automated medical image segmentation methods have been developed.However,until now,researchers have not developed a universal method for all types of medical image segmentation.This paper reviews the literature on segmentation techniques that have produced major breakthroughs in recent years.Among the large quantities of medical image segmentation methods,this paper mainly discusses two categories of medical image segmentation methods.One is the improved strategies based on traditional clustering method.The other is the research progress of the improved image segmentation network structure model based on U-Net.The power of technology proves that the performance of the deep learning-based method is significantly better than that of the traditional method.This paper discussed both advantages and disadvantages of different algorithms and detailed how these methods can be used for the segmentation of lesions or other organs and tissues,as well as possible technical trends for future work.展开更多
In k-means clustering, we are given a set of n data points in d-dimensional space R^d and an integer k and the problem is to determine a set of k points in R^d, called centers, so as to minimize the mean squared dista...In k-means clustering, we are given a set of n data points in d-dimensional space R^d and an integer k and the problem is to determine a set of k points in R^d, called centers, so as to minimize the mean squared distance from each data point to its nearest center. In this paper, we present a simple and efficient clustering algorithm based on the k-means algorithm, which we call enhanced k-means algorithm. This algorithm is easy to implement, requiring a simple data structure to keep some information in each iteration to be used in the next iteration. Our experimental results demonstrated that our scheme can improve the computational speed of the k-means algorithm by the magnitude in the total number of distance calculations and the overall time of computation.展开更多
For the existing support vector machine, when recognizing more questions, the shortcomings of high computational complexity and low recognition rate under the low SNR are emerged. The characteristic parameter of the s...For the existing support vector machine, when recognizing more questions, the shortcomings of high computational complexity and low recognition rate under the low SNR are emerged. The characteristic parameter of the signal is extracted and optimized by using a clustering algorithm, support vector machine is trained by grading algorithm so as to enhance the rate of convergence, improve the performance of recognition under the low SNR and realize modulation recognition of the signal based on the modulation system of the constellation diagram in this paper. Simulation results show that the average recognition rate based on this algorithm is enhanced over 30% compared with methods that adopting clustering algorithm or support vector machine respectively under the low SNR. The average recognition rate can reach 90% when the SNR is 5 dB, and the method is easy to be achieved so that it has broad application prospect in the modulating recognition.展开更多
Clustering, in data mining, is a useful technique for discovering interesting data distributions and patterns in the underlying data, and has many application fields, such as statistical data analysis, pattern recogni...Clustering, in data mining, is a useful technique for discovering interesting data distributions and patterns in the underlying data, and has many application fields, such as statistical data analysis, pattern recognition, image processing, and etc. We combine sampling technique with DBSCAN algorithm to cluster large spatial databases, and two sampling based DBSCAN (SDBSCAN) algorithms are developed. One algorithm introduces sampling technique inside DBSCAN, and the other uses sampling procedure outside DBSCAN. Experimental results demonstrate that our algorithms are effective and efficient in clustering large scale spatial databases.展开更多
Intuitionistic fuzzy sets(IFSs) are useful means to describe and deal with vague and uncertain data.An intuitionistic fuzzy C-means algorithm to cluster IFSs is developed.In each stage of the intuitionistic fuzzy C-me...Intuitionistic fuzzy sets(IFSs) are useful means to describe and deal with vague and uncertain data.An intuitionistic fuzzy C-means algorithm to cluster IFSs is developed.In each stage of the intuitionistic fuzzy C-means method the seeds are modified,and for each IFS a membership degree to each of the clusters is estimated.In the end of the algorithm,all the given IFSs are clustered according to the estimated membership degrees.Furthermore,the algorithm is extended for clustering interval-valued intuitionistic fuzzy sets(IVIFSs).Finally,the developed algorithms are illustrated through conducting experiments on both the real-world and simulated data sets.展开更多
To improve the recognition rate of signal modulation recognition methods based on the clustering algorithm under the low SNR, a modulation recognition method is proposed. The characteristic parameter of the signal is ...To improve the recognition rate of signal modulation recognition methods based on the clustering algorithm under the low SNR, a modulation recognition method is proposed. The characteristic parameter of the signal is extracted by using a clustering algorithm, the neural network is trained by using the algorithm of variable gradient correction (Polak-Ribiere) so as to enhance the rate of convergence, improve the performance of recognition under the low SNR and realize modulation recognition of the signal based on the modulation system of the constellation diagram. Simulation results show that the recognition rate based on this algorithm is enhanced over 30% compared with the methods that adopt clustering algorithm or neural network based on the back propagation algorithm alone under the low SNR. The recognition rate can reach 90% when the SNR is 4 dB, and the method is easy to be achieved so that it has a broad application prospect in the modulating recognition.展开更多
文摘Energy efficiency is the prime concern in Wireless Sensor Networks(WSNs) as maximized energy consumption without essentially limits the energy stability and network lifetime. Clustering is the significant approach essential for minimizing unnecessary transmission energy consumption with sustained network lifetime. This clustering process is identified as the Non-deterministic Polynomial(NP)-hard optimization problems which has the maximized probability of being solved through metaheuristic algorithms.This adoption of hybrid metaheuristic algorithm concentrates on the identification of the optimal or nearoptimal solutions which aids in better energy stability during Cluster Head(CH) selection. In this paper,Hybrid Seagull and Whale Optimization Algorithmbased Dynamic Clustering Protocol(HSWOA-DCP)is proposed with the exploitation benefits of WOA and exploration merits of SEOA to optimal CH selection for maintaining energy stability with prolonged network lifetime. This HSWOA-DCP adopted the modified version of SEagull Optimization Algorithm(SEOA) to handle the problem of premature convergence and computational accuracy which is maximally possible during CH selection. The inclusion of SEOA into WOA improved the global searching capability during the selection of CH and prevents worst fitness nodes from being selected as CH, since the spiral attacking behavior of SEOA is similar to the bubble-net characteristics of WOA. This CH selection integrates the spiral attacking principles of SEOA and contraction surrounding mechanism of WOA for improving computation accuracy to prevent frequent election process. It also included the strategy of levy flight strategy into SEOA for potentially avoiding premature convergence to attain better trade-off between the rate of exploration and exploitation in a more effective manner. The simulation results of the proposed HSWOADCP confirmed better network survivability rate, network residual energy and network overall throughput on par with the competitive CH selection schemes under different number of data transmission rounds.The statistical analysis of the proposed HSWOA-DCP scheme also confirmed its energy stability with respect to ANOVA test.
文摘In Wireless Sensor Networks(WSNs),Clustering process is widely utilized for increasing the lifespan with sustained energy stability during data transmission.Several clustering protocols were devised for extending network lifetime,but most of them failed in handling the problem of fixed clustering,static rounds,and inadequate Cluster Head(CH)selection criteria which consumes more energy.In this paper,Stochastic Ranking Improved Teaching-Learning and Adaptive Grasshopper Optimization Algorithm(SRITL-AGOA)-based Clustering Scheme for energy stabilization and extending network lifespan.This SRITL-AGOA selected CH depending on the weightage of factors such as node mobility degree,neighbour's density distance to sink,single-hop or multihop communication and Residual Energy(RE)that directly influences the energy consumption of sensor nodes.In specific,Grasshopper Optimization Algorithm(GOA)is improved through tangent-based nonlinear strategy for enhancing the ability of global optimization.On the other hand,stochastic ranking and violation constraint handling strategies are embedded into Teaching-Learning-based Optimization Algorithm(TLOA)for improving its exploitation tendencies.Then,SR and VCH improved TLOA is embedded into the exploitation phase of AGOA for selecting better CH by maintaining better balance amid exploration and exploitation.Simulation results confirmed that the proposed SRITL-AGOA improved throughput by 21.86%,network stability by 18.94%,load balancing by 16.14%with minimized energy depletion by19.21%,compared to the competitive CH selection approaches.
文摘Rapid development in Information Technology(IT)has allowed several novel application regions like large outdoor vehicular networks for Vehicle-to-Vehicle(V2V)transmission.Vehicular networks give a safe and more effective driving experience by presenting time-sensitive and location-aware data.The communication occurs directly between V2V and Base Station(BS)units such as the Road Side Unit(RSU),named as a Vehicle to Infrastructure(V2I).However,the frequent topology alterations in VANETs generate several problems with data transmission as the vehicle velocity differs with time.Therefore,the scheme of an effectual routing protocol for reliable and stable communications is significant.Current research demonstrates that clustering is an intelligent method for effectual routing in a mobile environment.Therefore,this article presents a Falcon Optimization Algorithm-based Energy Efficient Communication Protocol for Cluster-based Routing(FOA-EECPCR)technique in VANETS.The FOA-EECPCR technique intends to group the vehicles and determine the shortest route in the VANET.To accomplish this,the FOA-EECPCR technique initially clusters the vehicles using FOA with fitness functions comprising energy,distance,and trust level.For the routing process,the Sparrow Search Algorithm(SSA)is derived with a fitness function that encompasses two variables,namely,energy and distance.A series of experiments have been conducted to exhibit the enhanced performance of the FOA-EECPCR method.The experimental outcomes demonstrate the enhanced performance of the FOA-EECPCR approach over other current methods.
基金the National Natural Science Foundation of China(Grant No.62101579).
文摘Offboard active decoys(OADs)can effectively jam monopulse radars.However,for missiles approaching from a particular direction and distance,the OAD should be placed at a specific location,posing high requirements for timing and deployment.To improve the response speed and jamming effect,a cluster of OADs based on an unmanned surface vehicle(USV)is proposed.The formation of the cluster determines the effectiveness of jamming.First,based on the mechanism of OAD jamming,critical conditions are identified,and a method for assessing the jamming effect is proposed.Then,for the optimization of the cluster formation,a mathematical model is built,and a multi-tribe adaptive particle swarm optimization algorithm based on mutation strategy and Metropolis criterion(3M-APSO)is designed.Finally,the formation optimization problem is solved and analyzed using the 3M-APSO algorithm under specific scenarios.The results show that the improved algorithm has a faster convergence rate and superior performance as compared to the standard Adaptive-PSO algorithm.Compared with a single OAD,the optimal formation of USV-OAD cluster effectively fills the blind area and maximizes the use of jamming resources.
基金supported by the Planning Special Project of Guangdong Power Grid Co.,Ltd.:“Study on load modeling based on total measurement and discrimination method suitable for system characteristic analysis and calculation during the implementation of target grid in Guangdong power grid”(0319002022030203JF00023).
文摘The premise and basis of load modeling are substation load composition inquiries and cluster analyses.However,the traditional kernel fuzzy C-means(KFCM)algorithm is limited by artificial clustering number selection and its convergence to local optimal solutions.To overcome these limitations,an improved KFCM algorithm with adaptive optimal clustering number selection is proposed in this paper.This algorithm optimizes the KFCM algorithm by combining the powerful global search ability of genetic algorithm and the robust local search ability of simulated annealing algorithm.The improved KFCM algorithm adaptively determines the ideal number of clusters using the clustering evaluation index ratio.Compared with the traditional KFCM algorithm,the enhanced KFCM algorithm has robust clustering and comprehensive abilities,enabling the efficient convergence to the global optimal solution.
基金supported by Princess Nourah bint Abdulrahman University Researchers Supporting Project number(PNURSP2023R104)Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.
文摘Several pests feed on leaves,stems,bases,and the entire plant,causing plant illnesses.As a result,it is vital to identify and eliminate the disease before causing any damage to plants.Manually detecting plant disease and treating it is pretty challenging in this period.Image processing is employed to detect plant disease since it requires much effort and an extended processing period.The main goal of this study is to discover the disease that affects the plants by creating an image processing system that can recognize and classify four different forms of plant diseases,including Phytophthora infestans,Fusarium graminearum,Puccinia graminis,tomato yellow leaf curl.Therefore,this work uses the Support vector machine(SVM)classifier to detect and classify the plant disease using various steps like image acquisition,Pre-processing,Segmentation,feature extraction,and classification.The gray level co-occurrence matrix(GLCM)and the local binary pattern features(LBP)are used to identify the disease-affected portion of the plant leaf.According to experimental data,the proposed technology can correctly detect and diagnose plant sickness with a 97.2 percent accuracy.
文摘Recently,the fundamental problem with Hybrid Mobile Ad-hoc Net-works(H-MANETs)is tofind a suitable and secure way of balancing the load through Internet gateways.Moreover,the selection of the gateway and overload of the network results in packet loss and Delay(DL).For optimal performance,it is important to load balance between different gateways.As a result,a stable load balancing procedure is implemented,which selects gateways based on Fuzzy Logic(FL)and increases the efficiency of the network.In this case,since gate-ways are selected based on the number of nodes,the Energy Consumption(EC)was high.This paper presents a novel Node Quality-based Clustering Algo-rithm(NQCA)based on Fuzzy-Genetic for Cluster Head and Gateway Selection(FGCHGS).This algorithm combines NQCA with the Improved Weighted Clus-tering Algorithm(IWCA).The NQCA algorithm divides the network into clusters based upon node priority,transmission range,and neighbourfidelity.In addition,the simulation results tend to evaluate the performance effectiveness of the FFFCHGS algorithm in terms of EC,packet loss rate(PLR),etc.
基金supporting project number(RSP2022R498),King Saud University,Riyadh,Saudi Arabia.
文摘Data clustering is crucial when it comes to data processing and analytics.The new clustering method overcomes the challenge of evaluating and extracting data from big data.Numerical or categorical data can be grouped.Existing clustering methods favor numerical data clustering and ignore categorical data clustering.Until recently,the only way to cluster categorical data was to convert it to a numeric representation and then cluster it using current numeric clustering methods.However,these algorithms could not use the concept of categorical data for clustering.Following that,suggestions for expanding traditional categorical data processing methods were made.In addition to expansions,several new clustering methods and extensions have been proposed in recent years.ROCK is an adaptable and straightforward algorithm for calculating the similarity between data sets to cluster them.This paper aims to modify the algo-rithm by creating a parameterized version that takes specific algorithm parameters as input and outputs satisfactory cluster structures.The parameterized ROCK algorithm is the name given to the modified algorithm(P-ROCK).The proposed modification makes the original algorithm moreflexible by using user-defined parameters.A detailed hypothesis was developed later validated with experimental results on real-world datasets using our proposed P-ROCK algorithm.A comparison with the original ROCK algorithm is also provided.Experiment results show that the proposed algorithm is on par with the original ROCK algorithm with an accuracy of 97.9%.The proposed P-ROCK algorithm has improved the runtime and is moreflexible and scalable.
文摘Wireless Sensor Networks are composed of autonomous sensing devices which are interconnected to form a closed network.This closed network is intended to share sensitive location-centric information from a source node to the base station through efficient routing mechanisms.The efficiency of the sensor node is energy bounded,acts as a concentrated area for most researchers to offer a solution for the early draining power of sensors.Network management plays a significant role in wireless sensor networks,which was obsessed with the factors like the reliability of the network,resource management,energy-efficient routing,and scalability of services.The topology of the wireless sensor networks acts dri-ven factor for network efficiency which can be effectively maintained by perform-ing the clustering process effectively.More solutions and clustering algorithms have been offered by various researchers,but the concern of reduced efficiency in the routing process and network management still exists.This research paper offers a hybrid algorithm composed of a memetic algorithm which is an enhanced version of a genetic algorithm integrated with the adaptive hill-climbing algorithm for performing energy-efficient clustering process in the wireless sensor networks.The memetic algorithm employs a local searching methodology to mitigate the premature convergence,while the adaptive hill-climbing algorithm is a local search algorithm that persistently migrates towards the increased elevation to determine the peak of the mountain(i.e.,)best cluster head in the wireless sensor networks.The proposed hybrid algorithm is compared with the state of art clus-tering algorithm to prove that the proposed algorithm outperforms in terms of a network life-time,energy consumption,throughput,etc.
基金This work was supported in part by the National Natural Science Foundation of China under Grant 62171203in part by the Suzhou Key Supporting Subjects[Health Informatics(No.SZFCXK202147)]+2 种基金in part by the Changshu Science and Technology Program[No.CS202015,CS202246]in part by the Changshu City Health and Health Committee Science and Technology Program[No.csws201913]in part by the“333 High Level Personnel Training Project of Jiangsu Province”.
文摘In recent years,the soft subspace clustering algorithm has shown good results for high-dimensional data,which can assign different weights to each cluster class and use weights to measure the contribution of each dimension in various features.The enhanced soft subspace clustering algorithm combines interclass separation and intraclass tightness information,which has strong results for image segmentation,but the clustering algorithm is vulnerable to noisy data and dependence on the initialized clustering center.However,the clustering algorithmis susceptible to the influence of noisydata and reliance on initializedclustering centers andfalls into a local optimum;the clustering effect is poor for brain MR images with unclear boundaries and noise effects.To address these problems,a soft subspace clustering algorithm for brain MR images based on genetic algorithm optimization is proposed,which combines the generalized noise technique,relaxes the equational weight constraint in the objective function as the boundary constraint,and uses a genetic algorithm as a method to optimize the initialized clustering center.The genetic algorithm finds the best clustering center and reduces the algorithm’s dependence on the initial clustering center.The experiment verifies the robustness of the algorithm,as well as the noise immunity in various ways and shows good results on the common dataset and the brain MR images provided by the Changshu First People’s Hospital with specific high accuracy for clinical medicine.
基金This work was supported by the Ulsan City&Electronics and Telecommunications Research Institute(ETRI)grant funded by the Ulsan City[22AS1600,the development of intelligentization technology for the main industry for manufacturing innovation and Human-mobile-space autonomous collaboration intelligence technology development in industrial sites].
文摘In a vehicular ad hoc network(VANET),a massive quantity of data needs to be transmitted on a large scale in shorter time durations.At the same time,vehicles exhibit high velocity,leading to more vehicle disconnections.Both of these characteristics result in unreliable data communication in VANET.A vehicle clustering algorithm clusters the vehicles in groups employed in VANET to enhance network scalability and connection reliability.Clustering is considered one of the possible solutions for attaining effectual interaction in VANETs.But one such difficulty was reducing the cluster number under increasing transmitting nodes.This article introduces an Evolutionary Hide Objects Game Optimization based Distance Aware Clustering(EHOGO-DAC)Scheme for VANET.The major intention of the EHOGO-DAC technique is to portion the VANET into distinct sets of clusters by grouping vehicles.In addition,the DHOGO-EAC technique is mainly based on the HOGO algorithm,which is stimulated by old games,and the searching agent tries to identify hidden objects in a given space.The DHOGO-EAC technique derives a fitness function for the clustering process,including the total number of clusters and Euclidean distance.The experimental assessment of the DHOGO-EAC technique was carried out under distinct aspects.The comparison outcome stated the enhanced outcomes of the DHOGO-EAC technique compared to recent approaches.
基金funded by the State Grid Limited Science and Technology Project of China,Grant Number SGSXDK00DJJS2200144.
文摘At present,the proportion of new energy in the power grid is increasing,and the random fluctuations in power output increase the risk of cascading failures in the power grid.In this paper,we propose a method for identifying high-risk scenarios of interlocking faults in new energy power grids based on a deep embedding clustering(DEC)algorithm and apply it in a risk assessment of cascading failures in different operating scenarios for new energy power grids.First,considering the real-time operation status and system structure of new energy power grids,the scenario cascading failure risk indicator is established.Based on this indicator,the risk of cascading failure is calculated for the scenario set,the scenarios are clustered based on the DEC algorithm,and the scenarios with the highest indicators are selected as the significant risk scenario set.The results of simulations with an example power grid show that our method can effectively identify scenarios with a high risk of cascading failures from a large number of scenarios.
基金The National Natural Science Foundation of China(No50674086)Specialized Research Fund for the Doctoral Program of Higher Education (No20060290508)the Youth Scientific Research Foundation of China University of Mining and Technology (No2006A047)
文摘In allusion to the disadvantage of having to obtain the number of clusters of data sets in advance and the sensitivity to selecting initial clustering centers in the k-means algorithm, an improved k-means clustering algorithm is proposed. First, the concept of a silhouette coefficient is introduced, and the optimal clustering number Kopt of a data set with unknown class information is confirmed by calculating the silhouette coefficient of objects in clusters under different K values. Then the distribution of the data set is obtained through hierarchical clustering and the initial clustering-centers are confirmed. Finally, the clustering is completed by the traditional k-means clustering. By the theoretical analysis, it is proved that the improved k-means clustering algorithm has proper computational complexity. The experimental results of IRIS testing data set show that the algorithm can distinguish different clusters reasonably and recognize the outliers efficiently, and the entropy generated by the algorithm is lower.
基金The National Natural Science Foundation of China(No.50674086)Specialized Research Fund for the Doctoral Program of Higher Education(No.20060290508)the Postdoctoral Scientific Program of Jiangsu Province(No.0701045B)
文摘In order to mine production and security information from security supervising data and to ensure security and safety involved in production and decision-making,a clustering analysis algorithm for security supervising data based on a semantic description in coal mines is studied.First,the semantic and numerical-based hybrid description method of security supervising data in coal mines is described.Secondly,the similarity measurement method of semantic and numerical data are separately given and a weight-based hybrid similarity measurement method for the security supervising data based on a semantic description in coal mines is presented.Thirdly,taking the hybrid similarity measurement method as the distance criteria and using a grid methodology for reference,an improved CURE clustering algorithm based on the grid is presented.Finally,the simulation results of a security supervising data set in coal mines validate the efficiency of the algorithm.
基金supported partly by the Open Project of State Key Laboratory of Millimeter Wave under Grant K202218partly by Innovation and Entrepreneurship Training Program of College Students under Grants 202210700006Y and 202210700005Z.
文摘As a mainstream research direction in the field of image segmentation,medical image segmentation plays a key role in the quantification of lesions,three-dimensional reconstruction,region of interest extraction and so on.Compared with natural images,medical images have a variety of modes.Besides,the emphasis of information which is conveyed by images of different modes is quite different.Because it is time-consuming and inefficient to manually segment medical images only by professional and experienced doctors.Therefore,large quantities of automated medical image segmentation methods have been developed.However,until now,researchers have not developed a universal method for all types of medical image segmentation.This paper reviews the literature on segmentation techniques that have produced major breakthroughs in recent years.Among the large quantities of medical image segmentation methods,this paper mainly discusses two categories of medical image segmentation methods.One is the improved strategies based on traditional clustering method.The other is the research progress of the improved image segmentation network structure model based on U-Net.The power of technology proves that the performance of the deep learning-based method is significantly better than that of the traditional method.This paper discussed both advantages and disadvantages of different algorithms and detailed how these methods can be used for the segmentation of lesions or other organs and tissues,as well as possible technical trends for future work.
文摘In k-means clustering, we are given a set of n data points in d-dimensional space R^d and an integer k and the problem is to determine a set of k points in R^d, called centers, so as to minimize the mean squared distance from each data point to its nearest center. In this paper, we present a simple and efficient clustering algorithm based on the k-means algorithm, which we call enhanced k-means algorithm. This algorithm is easy to implement, requiring a simple data structure to keep some information in each iteration to be used in the next iteration. Our experimental results demonstrated that our scheme can improve the computational speed of the k-means algorithm by the magnitude in the total number of distance calculations and the overall time of computation.
基金supported in part by the National Natural Science Foundation of China under Grand No.61871129 and No.61301179Projects of Science and Technology Plan Guangdong Province under Grand No.2014A010101284
文摘For the existing support vector machine, when recognizing more questions, the shortcomings of high computational complexity and low recognition rate under the low SNR are emerged. The characteristic parameter of the signal is extracted and optimized by using a clustering algorithm, support vector machine is trained by grading algorithm so as to enhance the rate of convergence, improve the performance of recognition under the low SNR and realize modulation recognition of the signal based on the modulation system of the constellation diagram in this paper. Simulation results show that the average recognition rate based on this algorithm is enhanced over 30% compared with methods that adopting clustering algorithm or support vector machine respectively under the low SNR. The average recognition rate can reach 90% when the SNR is 5 dB, and the method is easy to be achieved so that it has broad application prospect in the modulating recognition.
基金Supported by the Open Researches Fund Program of L IESMARS(WKL(0 0 ) 0 30 2 )
文摘Clustering, in data mining, is a useful technique for discovering interesting data distributions and patterns in the underlying data, and has many application fields, such as statistical data analysis, pattern recognition, image processing, and etc. We combine sampling technique with DBSCAN algorithm to cluster large spatial databases, and two sampling based DBSCAN (SDBSCAN) algorithms are developed. One algorithm introduces sampling technique inside DBSCAN, and the other uses sampling procedure outside DBSCAN. Experimental results demonstrate that our algorithms are effective and efficient in clustering large scale spatial databases.
基金supported by the National Natural Science Foundation of China for Distinguished Young Scholars(70625005)
文摘Intuitionistic fuzzy sets(IFSs) are useful means to describe and deal with vague and uncertain data.An intuitionistic fuzzy C-means algorithm to cluster IFSs is developed.In each stage of the intuitionistic fuzzy C-means method the seeds are modified,and for each IFS a membership degree to each of the clusters is estimated.In the end of the algorithm,all the given IFSs are clustered according to the estimated membership degrees.Furthermore,the algorithm is extended for clustering interval-valued intuitionistic fuzzy sets(IVIFSs).Finally,the developed algorithms are illustrated through conducting experiments on both the real-world and simulated data sets.
基金supported by the National Natural Science Foundation of China(6107207061301179)the National Science and Technology Major Project(2010ZX03006-002-04)
文摘To improve the recognition rate of signal modulation recognition methods based on the clustering algorithm under the low SNR, a modulation recognition method is proposed. The characteristic parameter of the signal is extracted by using a clustering algorithm, the neural network is trained by using the algorithm of variable gradient correction (Polak-Ribiere) so as to enhance the rate of convergence, improve the performance of recognition under the low SNR and realize modulation recognition of the signal based on the modulation system of the constellation diagram. Simulation results show that the recognition rate based on this algorithm is enhanced over 30% compared with the methods that adopt clustering algorithm or neural network based on the back propagation algorithm alone under the low SNR. The recognition rate can reach 90% when the SNR is 4 dB, and the method is easy to be achieved so that it has a broad application prospect in the modulating recognition.