This work proposes a Tensor Train Random Projection(TTRP)method for dimension reduction,where pairwise distances can be approximately preserved.Our TTRP is systematically constructed through a Tensor Train(TT)represen...This work proposes a Tensor Train Random Projection(TTRP)method for dimension reduction,where pairwise distances can be approximately preserved.Our TTRP is systematically constructed through a Tensor Train(TT)representation with TT-ranks equal to one.Based on the tensor train format,this random projection method can speed up the dimension reduction procedure for high-dimensional datasets and requires fewer storage costs with little loss in accuracy,comparedwith existingmethods.We provide a theoretical analysis of the bias and the variance of TTRP,which shows that this approach is an expected isometric projectionwith bounded variance,and we show that the scaling Rademacher variable is an optimal choice for generating the corresponding TT-cores.Detailed numerical experiments with synthetic datasets and theMNIST dataset are conducted to demonstrate the efficiency of TTRP.展开更多
Cancellable biometrics is the solution for the trade-off between two concepts:Biometrics for Security and Security for Biometrics.The cancelable template is stored in the authentication system’s database rather than ...Cancellable biometrics is the solution for the trade-off between two concepts:Biometrics for Security and Security for Biometrics.The cancelable template is stored in the authentication system’s database rather than the original biometric data.In case of the database is compromised,it is easy for the template to be canceled and regenerated from the same biometric data.Recoverability of the cancelable template comes from the diversity of the cancelable transformation parameters(cancelable key).Therefore,the cancelable key must be secret to be used in the system authentication process as a second authentication factor in con-junction with the biometric data.The main contribution of this paper is to tackle the risks of stolen/lost/shared cancelable keys by using biometric trait(in different feature domains)as the only authentication factor,in addition to achieving good performance with high security.The standard Generative Adversarial Network(GAN)is proposed as an encryption tool that needs the cancelable key during the training phase,and the testing phase depends only on the biometric trait.Additionally,random projection transformation is employed to increase the proposed system’s security and performance.The proposed transformation system is tested using the standard ORL face database,and the experiments are done by applying different features domains.Moreover,a security analysis for the proposed transformation system is presented.展开更多
In this paper, a unified matrix recovery model was proposed for diverse corrupted matrices. Resulting from the separable structure of the proposed model, the convex optimization problem can be solved efficiently by ad...In this paper, a unified matrix recovery model was proposed for diverse corrupted matrices. Resulting from the separable structure of the proposed model, the convex optimization problem can be solved efficiently by adopting an inexact augmented Lagrange multiplier (IALM) method. Additionally, a random projection accelerated technique (IALM+RP) was adopted to improve the success rate. From the preliminary numerical comparisons, it was indicated that for the standard robust principal component analysis (PCA) problem, IALM+RP was at least two to six times faster than IALM with an insignificant reduction in accuracy; and for the outlier pursuit (OP) problem, IALM+RP was at least 6.9 times faster, even up to 8.3 times faster when the size of matrix was 2 000×2 000.展开更多
Random Projection Code (RPC) is a mechanism that combines channel coding and modulation together and realizes rate adaptation in the receiving end. Random projection code’s mapping matrix has significant influences o...Random Projection Code (RPC) is a mechanism that combines channel coding and modulation together and realizes rate adaptation in the receiving end. Random projection code’s mapping matrix has significant influences on decoding performance as well as hardware implementation complexity. To reduce hardware implementation complexity, we design a quasi-cyclic mapping matrix for RPC codes. Compared with other construction approaches, our design gets rid of data filter component, thus reducing chip area 7284.95 um2, and power consumption 331.46 uW in 0.13 um fabrication. Our simulation results show that our method does not cause any performance loss and even gets 0.2 dB to 0.5 dB gain at BER 10-4.展开更多
This paper investigates rate adaptation schemes for decoding-and-forward (DF) relay system based on random projections codes (RPC). We consider a classic three node relay system model, where relay node performs on hal...This paper investigates rate adaptation schemes for decoding-and-forward (DF) relay system based on random projections codes (RPC). We consider a classic three node relay system model, where relay node performs on half-duplex mode. Then, we give out receiving diversity relay scheme and coding diversity relay scheme, and present their jointly decoding methods. Furthermore, we discuss the performance of the two schemes with different power allocation coefficients. Simulations show that our relay schemes can achieve different gain with the help of relay node. And, we should allocate power to source node to just guarantee relay node can decode successfully, and allocate remain power to relay node as far as possible. In this way, this DF relay system not only achieves diversity gain, but also achieves higher and smooth spectrum efficiency.展开更多
We are studying the motion of a random walker in generalised d-dimensional continuum with unit step length (up to 10 dimensions) and its projected one dimensional motion numerically. The motion of a random walker in l...We are studying the motion of a random walker in generalised d-dimensional continuum with unit step length (up to 10 dimensions) and its projected one dimensional motion numerically. The motion of a random walker in lattice or continuum is well studied in statistical physics but what will be the statistics of projected one dimensional motion of higher dimensional random walker is yet to be explored. Here in this paper, by addressing this particular type of problem, it shows that the projected motion is diffusive irrespective of any dimension;however, the diffusion rate is changing inversely with dimensions. As a consequence, it can be predicted that for the one dimensional projected motion of infinite dimensional random walk, the diffusion rate will be zero. This is an interesting result, at least pedagogically, which implies that though in infinite dimensions there is diffusion, its one dimensional projection is motionless. At the end of the discussion we are able to make a good comparison between projected one dimensional motion of generalised d-dimensional random walk with unit step length and pure one dimensional random walk with random step length varying uniformly between -h to h where h is a “step length renormalizing factor”.展开更多
基金supported by the NationalNatural Science Foundation of China(No.12071291)the Science and Technology Commission of Shanghai Municipality(No.20JC1414300)the Natural Science Foundation of Shanghai(No.20ZR1436200).
文摘This work proposes a Tensor Train Random Projection(TTRP)method for dimension reduction,where pairwise distances can be approximately preserved.Our TTRP is systematically constructed through a Tensor Train(TT)representation with TT-ranks equal to one.Based on the tensor train format,this random projection method can speed up the dimension reduction procedure for high-dimensional datasets and requires fewer storage costs with little loss in accuracy,comparedwith existingmethods.We provide a theoretical analysis of the bias and the variance of TTRP,which shows that this approach is an expected isometric projectionwith bounded variance,and we show that the scaling Rademacher variable is an optimal choice for generating the corresponding TT-cores.Detailed numerical experiments with synthetic datasets and theMNIST dataset are conducted to demonstrate the efficiency of TTRP.
文摘Cancellable biometrics is the solution for the trade-off between two concepts:Biometrics for Security and Security for Biometrics.The cancelable template is stored in the authentication system’s database rather than the original biometric data.In case of the database is compromised,it is easy for the template to be canceled and regenerated from the same biometric data.Recoverability of the cancelable template comes from the diversity of the cancelable transformation parameters(cancelable key).Therefore,the cancelable key must be secret to be used in the system authentication process as a second authentication factor in con-junction with the biometric data.The main contribution of this paper is to tackle the risks of stolen/lost/shared cancelable keys by using biometric trait(in different feature domains)as the only authentication factor,in addition to achieving good performance with high security.The standard Generative Adversarial Network(GAN)is proposed as an encryption tool that needs the cancelable key during the training phase,and the testing phase depends only on the biometric trait.Additionally,random projection transformation is employed to increase the proposed system’s security and performance.The proposed transformation system is tested using the standard ORL face database,and the experiments are done by applying different features domains.Moreover,a security analysis for the proposed transformation system is presented.
基金Supported by National Natural Science Foundation of China (No.51275348)College Students Innovation and Entrepreneurship Training Program of Tianjin University (No.201210056339)
文摘In this paper, a unified matrix recovery model was proposed for diverse corrupted matrices. Resulting from the separable structure of the proposed model, the convex optimization problem can be solved efficiently by adopting an inexact augmented Lagrange multiplier (IALM) method. Additionally, a random projection accelerated technique (IALM+RP) was adopted to improve the success rate. From the preliminary numerical comparisons, it was indicated that for the standard robust principal component analysis (PCA) problem, IALM+RP was at least two to six times faster than IALM with an insignificant reduction in accuracy; and for the outlier pursuit (OP) problem, IALM+RP was at least 6.9 times faster, even up to 8.3 times faster when the size of matrix was 2 000×2 000.
文摘Random Projection Code (RPC) is a mechanism that combines channel coding and modulation together and realizes rate adaptation in the receiving end. Random projection code’s mapping matrix has significant influences on decoding performance as well as hardware implementation complexity. To reduce hardware implementation complexity, we design a quasi-cyclic mapping matrix for RPC codes. Compared with other construction approaches, our design gets rid of data filter component, thus reducing chip area 7284.95 um2, and power consumption 331.46 uW in 0.13 um fabrication. Our simulation results show that our method does not cause any performance loss and even gets 0.2 dB to 0.5 dB gain at BER 10-4.
文摘This paper investigates rate adaptation schemes for decoding-and-forward (DF) relay system based on random projections codes (RPC). We consider a classic three node relay system model, where relay node performs on half-duplex mode. Then, we give out receiving diversity relay scheme and coding diversity relay scheme, and present their jointly decoding methods. Furthermore, we discuss the performance of the two schemes with different power allocation coefficients. Simulations show that our relay schemes can achieve different gain with the help of relay node. And, we should allocate power to source node to just guarantee relay node can decode successfully, and allocate remain power to relay node as far as possible. In this way, this DF relay system not only achieves diversity gain, but also achieves higher and smooth spectrum efficiency.
文摘We are studying the motion of a random walker in generalised d-dimensional continuum with unit step length (up to 10 dimensions) and its projected one dimensional motion numerically. The motion of a random walker in lattice or continuum is well studied in statistical physics but what will be the statistics of projected one dimensional motion of higher dimensional random walker is yet to be explored. Here in this paper, by addressing this particular type of problem, it shows that the projected motion is diffusive irrespective of any dimension;however, the diffusion rate is changing inversely with dimensions. As a consequence, it can be predicted that for the one dimensional projected motion of infinite dimensional random walk, the diffusion rate will be zero. This is an interesting result, at least pedagogically, which implies that though in infinite dimensions there is diffusion, its one dimensional projection is motionless. At the end of the discussion we are able to make a good comparison between projected one dimensional motion of generalised d-dimensional random walk with unit step length and pure one dimensional random walk with random step length varying uniformly between -h to h where h is a “step length renormalizing factor”.