A joint two-dimensional(2D)direction-of-arrival(DOA)and radial Doppler frequency estimation method for the L-shaped array is proposed in this paper based on the compressive sensing(CS)framework.Revised from the conven...A joint two-dimensional(2D)direction-of-arrival(DOA)and radial Doppler frequency estimation method for the L-shaped array is proposed in this paper based on the compressive sensing(CS)framework.Revised from the conventional CS-based methods where the joint spatial-temporal parameters are characterized in one large scale matrix,three smaller scale matrices with independent azimuth,elevation and Doppler frequency are introduced adopting a separable observation model.Afterwards,the estimation is achieved by L1-norm minimization and the Bayesian CS algorithm.In addition,under the L-shaped array topology,the azimuth and elevation are separated yet coupled to the same radial Doppler frequency.Hence,the pair matching problem is solved with the aid of the radial Doppler frequency.Finally,numerical simulations corroborate the feasibility and validity of the proposed algorithm.展开更多
Parameter estimation plays a critical role for the application and development of S-shaped growth model in the agricultural sciences and others.In this paper,a modified particle swarm optimization algorithm based on t...Parameter estimation plays a critical role for the application and development of S-shaped growth model in the agricultural sciences and others.In this paper,a modified particle swarm optimization algorithm based on the diffusion phenomenon(DPPSO) was employed to estimate the parameters for this model.Under the sense of least squares,the parameter estimation problem of S-shaped growth model,taking the Gompertz and Logistic models for example,is transformed into a multi-dimensional function optimization problem.The results show that the DPPSO algorithm can effectively estimate the parameters of the S-shaped growth model.展开更多
文摘A joint two-dimensional(2D)direction-of-arrival(DOA)and radial Doppler frequency estimation method for the L-shaped array is proposed in this paper based on the compressive sensing(CS)framework.Revised from the conventional CS-based methods where the joint spatial-temporal parameters are characterized in one large scale matrix,three smaller scale matrices with independent azimuth,elevation and Doppler frequency are introduced adopting a separable observation model.Afterwards,the estimation is achieved by L1-norm minimization and the Bayesian CS algorithm.In addition,under the L-shaped array topology,the azimuth and elevation are separated yet coupled to the same radial Doppler frequency.Hence,the pair matching problem is solved with the aid of the radial Doppler frequency.Finally,numerical simulations corroborate the feasibility and validity of the proposed algorithm.
基金Supported by the National Natural Science Foundation of China (61070009)the National Science and Technology Support Plan (2012BAH25F02)+2 种基金the Project of Jingdezhen Science and Technology Bureau (2011-1-47)the National Natural Science Foundation of Jiangxi Province (2009GZS0065)the Youth Science Foundation of Jiangxi Provincial Department of Education (GJJ12514)
文摘Parameter estimation plays a critical role for the application and development of S-shaped growth model in the agricultural sciences and others.In this paper,a modified particle swarm optimization algorithm based on the diffusion phenomenon(DPPSO) was employed to estimate the parameters for this model.Under the sense of least squares,the parameter estimation problem of S-shaped growth model,taking the Gompertz and Logistic models for example,is transformed into a multi-dimensional function optimization problem.The results show that the DPPSO algorithm can effectively estimate the parameters of the S-shaped growth model.