Lamprophyres typically appear in hydrothermal gold deposits.The relationship between lamprophyres and gold deposits is investigated widely.Some researchers suggest that the emplacement of lamprophyres triggers gold mi...Lamprophyres typically appear in hydrothermal gold deposits.The relationship between lamprophyres and gold deposits is investigated widely.Some researchers suggest that the emplacement of lamprophyres triggers gold mineralization,whereas others hypothesize that the formation of lamprophyres increases the fertility of mantle sources and ore-forming fluids.K-feldspar veins,with ages between those of lamprophyres and gold deposits,appear in lamprophyres in Zhenyuan.Therefore,K-feldspar veins are ideal for investigating the relationship between lamprophyres and gold deposits.Phlogopite in K-feldspar veins has lower Mg#,Ni,and Cr contents and higher TiO2,Li,Ba,Sr,Sc,Zr,Nb,and Cs contents than phlogopite in lamprophyres.The in-situ Sr isotopic values of apatites(0.7063–0.7066)in K-feldspar veins are within the range for apatites(0.7064–0.7078)from lamprophyres.High large-ion lithophile element concentrations and low Nb and Ta concentrations in phlogopite from lamprophyres,in addition to high(87Sr/86Sr)i values of apatite(0.7064–0.7078),indicate that the magma parental to these phlogopite and apatite crystals is derived from an enriched mantle.Kfeldspar veins are genetically correlated with lamprophyres,whereas sulfide mineral assemblage and trace element compositions of pyrite in K-feldspar veins suggest that K-feldspar veins in lamprophyres are not directly related to gold mineralization of the Zhenyuan deposit.展开更多
1.Objectives Keeryin rare metal ore district is located at the intersection of Markam,Jinchuan and Rangtang counties.More than 1000 pegmatite dykes are associated with the Keeryin granite pluton.These pegmafite dykes ...1.Objectives Keeryin rare metal ore district is located at the intersection of Markam,Jinchuan and Rangtang counties.More than 1000 pegmatite dykes are associated with the Keeryin granite pluton.These pegmafite dykes are the major source of industrial spodumene ore bodies.Based on the previous studies,we chose Keeryin rare metal ore district as the key target area for geology survey.In this study,we discovered six pegmatite lithium veins in the Sizemuzu district of the Keeryin.Moreover,we study the distribution of regional ore deposits and metallogeny,delineate prospecting target and evaluate the mineralization potential of Lithium.展开更多
Excellent outcrops in Matale Sri Lanka provide unique insight into the emplacement and evolution history of hydrothermal and pegmatitic rocks in the central highlands of Sri Lanka. Field, structural, petrological, the...Excellent outcrops in Matale Sri Lanka provide unique insight into the emplacement and evolution history of hydrothermal and pegmatitic rocks in the central highlands of Sri Lanka. Field, structural, petrological, thermo-barometric studies in the metamorphic basement rocks in the central highlands and related hydrothermal deposits are presented in this study. Detailed petrographic and mineralogical data reveal peak metamorphic conditions for the crustal unit in the study area as 854 ± 44oC at 10.83 ± 0.86 kbar. Hydrothermal veins consisting of quartz and mica are closely related to cross-cutting pegmatites, which significantly post-date the peak metamorphic conditions of the crustal unit. Field relations indicate that the veins originated as ductile-brittle fractures have subsequently sealed by pegmatites and hydrothermal crystallization. Geological, textural and mineralogical data suggest that most enriched hydrothermal veins have evolved from a fractionated granitic melt progressively enriched in H2O, F, etc. Quartz, K-feldspar, mica, tourmaline, fluorite and topaz bear evidence of multistage crystallization that alternated with episodes of resorption. It was suggested that the level of emplacement of pegmatites of the Matale District was middle crust, near the crustal scale brittle-ductile transition zone at a temperature of about 600oC. For this crustal level and temperature range, it is considered very unlikely that intruding pegmatitic melts followed pre-existing cracks. As such the emplacement temperatures of the pegmatites could be well below the peak metamorphic estimates in the mafic granulites. The metamorphic P-T strategy and position of formation of hydrothermal deposits and pegmatites is summarized in the modified P-T-t-D diagrams.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.41973045)Basic Science and Technology Research Funding of the CAGS(Grant No.JKYZD202312)+1 种基金the National Key Research and Development Project of China(Grant No.2022YFF0800903)National Natural Science Foundation of China(Grant Nos.41802113,42073053,42273073 and 42261144669).
文摘Lamprophyres typically appear in hydrothermal gold deposits.The relationship between lamprophyres and gold deposits is investigated widely.Some researchers suggest that the emplacement of lamprophyres triggers gold mineralization,whereas others hypothesize that the formation of lamprophyres increases the fertility of mantle sources and ore-forming fluids.K-feldspar veins,with ages between those of lamprophyres and gold deposits,appear in lamprophyres in Zhenyuan.Therefore,K-feldspar veins are ideal for investigating the relationship between lamprophyres and gold deposits.Phlogopite in K-feldspar veins has lower Mg#,Ni,and Cr contents and higher TiO2,Li,Ba,Sr,Sc,Zr,Nb,and Cs contents than phlogopite in lamprophyres.The in-situ Sr isotopic values of apatites(0.7063–0.7066)in K-feldspar veins are within the range for apatites(0.7064–0.7078)from lamprophyres.High large-ion lithophile element concentrations and low Nb and Ta concentrations in phlogopite from lamprophyres,in addition to high(87Sr/86Sr)i values of apatite(0.7064–0.7078),indicate that the magma parental to these phlogopite and apatite crystals is derived from an enriched mantle.Kfeldspar veins are genetically correlated with lamprophyres,whereas sulfide mineral assemblage and trace element compositions of pyrite in K-feldspar veins suggest that K-feldspar veins in lamprophyres are not directly related to gold mineralization of the Zhenyuan deposit.
文摘1.Objectives Keeryin rare metal ore district is located at the intersection of Markam,Jinchuan and Rangtang counties.More than 1000 pegmatite dykes are associated with the Keeryin granite pluton.These pegmafite dykes are the major source of industrial spodumene ore bodies.Based on the previous studies,we chose Keeryin rare metal ore district as the key target area for geology survey.In this study,we discovered six pegmatite lithium veins in the Sizemuzu district of the Keeryin.Moreover,we study the distribution of regional ore deposits and metallogeny,delineate prospecting target and evaluate the mineralization potential of Lithium.
文摘Excellent outcrops in Matale Sri Lanka provide unique insight into the emplacement and evolution history of hydrothermal and pegmatitic rocks in the central highlands of Sri Lanka. Field, structural, petrological, thermo-barometric studies in the metamorphic basement rocks in the central highlands and related hydrothermal deposits are presented in this study. Detailed petrographic and mineralogical data reveal peak metamorphic conditions for the crustal unit in the study area as 854 ± 44oC at 10.83 ± 0.86 kbar. Hydrothermal veins consisting of quartz and mica are closely related to cross-cutting pegmatites, which significantly post-date the peak metamorphic conditions of the crustal unit. Field relations indicate that the veins originated as ductile-brittle fractures have subsequently sealed by pegmatites and hydrothermal crystallization. Geological, textural and mineralogical data suggest that most enriched hydrothermal veins have evolved from a fractionated granitic melt progressively enriched in H2O, F, etc. Quartz, K-feldspar, mica, tourmaline, fluorite and topaz bear evidence of multistage crystallization that alternated with episodes of resorption. It was suggested that the level of emplacement of pegmatites of the Matale District was middle crust, near the crustal scale brittle-ductile transition zone at a temperature of about 600oC. For this crustal level and temperature range, it is considered very unlikely that intruding pegmatitic melts followed pre-existing cracks. As such the emplacement temperatures of the pegmatites could be well below the peak metamorphic estimates in the mafic granulites. The metamorphic P-T strategy and position of formation of hydrothermal deposits and pegmatites is summarized in the modified P-T-t-D diagrams.