The lower bound of maximum predictable time can be formulated into a constrained nonlinear opti- mization problem, and the traditional solutions to this problem are the filtering method and the conditional nonlinear o...The lower bound of maximum predictable time can be formulated into a constrained nonlinear opti- mization problem, and the traditional solutions to this problem are the filtering method and the conditional nonlinear optimal perturbation (CNOP) method. Usually, the CNOP method is implemented with the help of a gradient descent algorithm based on the adjoint method, which is named the ADJ-CNOP. However, with the increasing improvement of actual prediction models, more and more physical processes are taken into consideration in models in the form of parameterization, thus giving rise to the on–off switch problem, which tremendously affects the effectiveness of the conventional gradient descent algorithm based on the ad- joint method. In this study, we attempted to apply a genetic algorithm (GA) to the CNOP method, named GA-CNOP, to solve the predictability problems involving on–off switches. As the precision of the filtering method depends uniquely on the division of the constraint region, its results were taken as benchmarks, and a series of comparisons between the ADJ-CNOP and the GA-CNOP were performed for the modified Lorenz equation. Results show that the GA-CNOP can always determine the accurate lower bound of maximum predictable time, even in non-smooth cases, while the ADJ-CNOP, owing to the effect of on–off switches, often yields the incorrect lower bound of maximum predictable time. Therefore, in non-smooth cases, using GAs to solve predictability problems is more effective than using the conventional optimization algorithm based on gradients, as long as genetic operators in GAs are properly configured.展开更多
There are many population-based stochastic search algorithms for solving optimization problems. However, the universality and robustness of these algorithms are still unsatisfactory. This paper proposes an enhanced se...There are many population-based stochastic search algorithms for solving optimization problems. However, the universality and robustness of these algorithms are still unsatisfactory. This paper proposes an enhanced self-adaptiveevolutionary algorithm (ESEA) to overcome the demerits above. In the ESEA, four evolutionary operators are designed to enhance the evolutionary structure. Besides, the ESEA employs four effective search strategies under the framework of the self-adaptive learning. Four groups of the experiments are done to find out the most suitable parameter values for the ESEA. In order to verify the performance of the proposed algorithm, 26 state-of-the-art test functions are solved by the ESEA and its competitors. The experimental results demonstrate that the universality and robustness of the ESEA out-perform its competitors.展开更多
In this paper, we first reformulate the max-min dispersion problem as a saddle-point problem. Specifically, we introduce an auxiliary problem whose optimum value gives an upper bound on that of the original problem. T...In this paper, we first reformulate the max-min dispersion problem as a saddle-point problem. Specifically, we introduce an auxiliary problem whose optimum value gives an upper bound on that of the original problem. Then we propose the saddle-point problem to be solved by an adaptive custom proximal point algorithm. Numerical results show that the proposed algorithm is efficient.展开更多
针对通信中断下由智能网联车辆(Connected and Automated Vehicles,CAV)与人工驾驶车辆(Manually Driven Vehicles,MDV)所组成的混合编队的稳定性控制问题,考虑基于前车-领航车通信拓扑(Predecessor-Leader Following topology,PLF)和...针对通信中断下由智能网联车辆(Connected and Automated Vehicles,CAV)与人工驾驶车辆(Manually Driven Vehicles,MDV)所组成的混合编队的稳定性控制问题,考虑基于前车-领航车通信拓扑(Predecessor-Leader Following topology,PLF)和协同自适应巡航控制(Cooperative Adaptive Cruise Control,CACC)的混合编队,构建通信正常和通信中断状态下的车辆控制器.基于Routh-Hurwitz稳定性判据和频域分析方法设计稳定条件求解算法,计算控制器和MDV跟驰模型的稳定性条件,并提出针对两种控制器的平滑切换策略.案例分析表明:车队能够稳定安全行驶,各车速度标准差变化率均低于1.8%,平均加速度变化量和其平均值均低于0.016 m/s^(2),说明所提出的稳定性控制算法具有良好的有效性,可实现车辆及编队行驶状态的时空收敛;针对加速场景和减速场景,所提出的控制器切换策略能够分别减小车辆加速度波动幅度达37.1%和59.9%,控制器切换过程中的车辆状态稳定性得到显著提升.展开更多
基金supported bythe National Natural Science Foundation of China(Grant Nos40975063 and 40830955)
文摘The lower bound of maximum predictable time can be formulated into a constrained nonlinear opti- mization problem, and the traditional solutions to this problem are the filtering method and the conditional nonlinear optimal perturbation (CNOP) method. Usually, the CNOP method is implemented with the help of a gradient descent algorithm based on the adjoint method, which is named the ADJ-CNOP. However, with the increasing improvement of actual prediction models, more and more physical processes are taken into consideration in models in the form of parameterization, thus giving rise to the on–off switch problem, which tremendously affects the effectiveness of the conventional gradient descent algorithm based on the ad- joint method. In this study, we attempted to apply a genetic algorithm (GA) to the CNOP method, named GA-CNOP, to solve the predictability problems involving on–off switches. As the precision of the filtering method depends uniquely on the division of the constraint region, its results were taken as benchmarks, and a series of comparisons between the ADJ-CNOP and the GA-CNOP were performed for the modified Lorenz equation. Results show that the GA-CNOP can always determine the accurate lower bound of maximum predictable time, even in non-smooth cases, while the ADJ-CNOP, owing to the effect of on–off switches, often yields the incorrect lower bound of maximum predictable time. Therefore, in non-smooth cases, using GAs to solve predictability problems is more effective than using the conventional optimization algorithm based on gradients, as long as genetic operators in GAs are properly configured.
基金supported by the Aviation Science Funds of China(2010ZC13012)the Fund of Jiangsu Innovation Program for Graduate Education (CXLX11 0203)
文摘There are many population-based stochastic search algorithms for solving optimization problems. However, the universality and robustness of these algorithms are still unsatisfactory. This paper proposes an enhanced self-adaptiveevolutionary algorithm (ESEA) to overcome the demerits above. In the ESEA, four evolutionary operators are designed to enhance the evolutionary structure. Besides, the ESEA employs four effective search strategies under the framework of the self-adaptive learning. Four groups of the experiments are done to find out the most suitable parameter values for the ESEA. In order to verify the performance of the proposed algorithm, 26 state-of-the-art test functions are solved by the ESEA and its competitors. The experimental results demonstrate that the universality and robustness of the ESEA out-perform its competitors.
文摘In this paper, we first reformulate the max-min dispersion problem as a saddle-point problem. Specifically, we introduce an auxiliary problem whose optimum value gives an upper bound on that of the original problem. Then we propose the saddle-point problem to be solved by an adaptive custom proximal point algorithm. Numerical results show that the proposed algorithm is efficient.