During the condition monitoring of a planetary gearbox, features are extracted from raw data for a fault diagnosis.However, different features have different sensitivity for identifying different fault types, and thus...During the condition monitoring of a planetary gearbox, features are extracted from raw data for a fault diagnosis.However, different features have different sensitivity for identifying different fault types, and thus, the selection of a sensitive feature subset from an entire feature set and retaining as much of the class discriminatory information as possible has a directly effect on the accuracy of the classification results. In this paper, an improved hybrid feature selection technique(IHFST) that combines a distance evaluation technique(DET), Pearson’s correlation analysis, and an ad hoc technique is proposed. In IHFST, a temporary feature subset without irrelevant features is first selected according to the distance evaluation criterion of DET, and the Pearson’s correlation analysis and ad hoc technique are then employed to find and remove redundant features in the temporary feature subset, respectively, and hence,a sensitive feature subset without irrelevant or redundant features is selected from the entire feature set. Further, the k-means clustering method is applied to classify the different kinds of health conditions. The effectiveness of the proposed method was validated through several experiments carried out on a planetary gearbox with incipient cracks seeded in the tooth root of the sun gear, planet gear, and ring gear. The results show that the proposed method can successfully distinguish the different health conditions of a planetary gearbox, and achieves a better classification performance than other methods. This study proposes a sensitive feature subset selection method that achieves an obvious improvement in terms of the accuracy of the fault classification.展开更多
In order to ensure that the large-scale application of photovoltaic power generation does not affect the stability of the grid, accurate photovoltaic (PV) power generation forecast is essential. A short-term PV power ...In order to ensure that the large-scale application of photovoltaic power generation does not affect the stability of the grid, accurate photovoltaic (PV) power generation forecast is essential. A short-term PV power generation forecast method using the combination of K-means++, grey relational analysis (GRA) and support vector regression (SVR) based on feature selection (Hybrid Kmeans-GRA-SVR, HKGSVR) was proposed. The historical power data were clustered through the multi-index K-means++ algorithm and divided into ideal and non-ideal weather. The GRA algorithm was used to match the similar day and the nearest neighbor similar day of the prediction day. And selected appropriate input features for different weather types to train the SVR model. Under ideal weather, the average values of MAE, RMSE and R2 were 0.8101, 0.9608 kW and 99.66%, respectively. And this method reduced the average training time by 77.27% compared with the standard SVR model. Under non-ideal weather conditions, the average values of MAE, RMSE and R2 were 1.8337, 2.1379 kW and 98.47%, respectively. And this method reduced the average training time of the standard SVR model by 98.07%. The experimental results show that the prediction accuracy of the proposed model is significantly improved compared to the other five models, which verify the effectiveness of the method.展开更多
In this paper, a feature selection method combining the reliefF and SVM-RFE algorithm is proposed. This algorithm integrates the weight vector from the reliefF into SVM-RFE method. In this method, the reliefF filters ...In this paper, a feature selection method combining the reliefF and SVM-RFE algorithm is proposed. This algorithm integrates the weight vector from the reliefF into SVM-RFE method. In this method, the reliefF filters out many noisy features in the first stage. Then the new ranking criterion based on SVM-RFE method is applied to obtain the final feature subset. The SVM classifier is used to evaluate the final image classification accuracy. Experimental results show that our proposed relief- SVM-RFE algorithm can achieve significant improvements for feature selection in image classification.展开更多
The dimensionality of data is increasing very rapidly,which creates challenges for most of the current mining and learning algorithms,such as large memory requirements and high computational costs.The literature inclu...The dimensionality of data is increasing very rapidly,which creates challenges for most of the current mining and learning algorithms,such as large memory requirements and high computational costs.The literature includes much research on feature selection for supervised learning.However,feature selection for unsupervised learning has only recently been studied.Finding the subset of features in unsupervised learning that enhances the performance is challenging since the clusters are indeterminate.This work proposes a hybrid technique for unsupervised feature selection called GAk-MEANS,which combines the genetic algorithm(GA)approach with the classical k-Means algorithm.In the proposed algorithm,a new fitness func-tion is designed in addition to new smart crossover and mutation operators.The effectiveness of this algorithm is demonstrated on various datasets.Fur-thermore,the performance of GAk-MEANS has been compared with other genetic algorithms,such as the genetic algorithm using the Sammon Error Function and the genetic algorithm using the Sum of Squared Error Function.Additionally,the performance of GAk-MEANS is compared with the state-of-the-art statistical unsupervised feature selection techniques.Experimental results show that GAk-MEANS consistently selects subsets of features that result in better classification accuracy compared to others.In particular,GAk-MEANS is able to significantly reduce the size of the subset of selected features by an average of 86.35%(72%–96.14%),which leads to an increase of the accuracy by an average of 3.78%(1.05%–6.32%)compared to using all features.When compared with the genetic algorithm using the Sammon Error Function,GAk-MEANS is able to reduce the size of the subset of selected features by 41.29%on average,improve the accuracy by 5.37%,and reduce the time by 70.71%.When compared with the genetic algorithm using the Sum of Squared Error Function,GAk-MEANS on average is able to reduce the size of the subset of selected features by 15.91%,and improve the accuracy by 9.81%,but the time is increased by a factor of 3.When compared with the machine-learning based methods,we observed that GAk-MEANS is able to increase the accuracy by 13.67%on average with an 88.76%average increase in time.展开更多
Feature selection is very important to obtain meaningful and interpretive clustering results from a clustering analysis. In the application of soil data clustering, there is a lack of good understanding of the respons...Feature selection is very important to obtain meaningful and interpretive clustering results from a clustering analysis. In the application of soil data clustering, there is a lack of good understanding of the response of clustering performance to different features subsets. In the present paper, we analyzed the performance differences between k-means, fuzzy c-means, and spectral clustering algorithms in the conditions of different feature subsets of soil data sets. The experimental results demonstrated that the performances of spectral clustering algorithm were generally better than those of k-means and fuzzy c-means with different features subsets. The feature subsets containing environmental attributes helped to improve clustering performances better than those having spatial attributes and produced more accurate and meaningful clustering results. Our results demonstrated that combination of spectral clustering algorithm with the feature subsets containing environmental attributes rather than spatial attributes may be a better choice in applications of soil data clustering.展开更多
Many medical diagnosis applications are characterized by datasets that contain under-represented classes due to the fact that the disease is much rarer than the normal case. In such a situation classifiers such as dec...Many medical diagnosis applications are characterized by datasets that contain under-represented classes due to the fact that the disease is much rarer than the normal case. In such a situation classifiers such as decision trees and Na?ve Bayesian that generalize over the data are not the proper choice as classification methods. Case-based classifiers that can work on the samples seen so far are more appropriate for such a task. We propose to calculate the contingency table and class specific evaluation measures despite the overall accuracy for evaluation purposes of classifiers for these specific data characteristics. We evaluate the different options of our case-based classifier and compare the perform-ance to decision trees and Na?ve Bayesian. Finally, we give an outlook for further work.展开更多
Apple leaf disease is one of the main factors to constrain the apple production and quality.It takes a long time to detect the diseases by using the traditional diagnostic approach,thus farmers often miss the best tim...Apple leaf disease is one of the main factors to constrain the apple production and quality.It takes a long time to detect the diseases by using the traditional diagnostic approach,thus farmers often miss the best time to prevent and treat the diseases.Apple leaf disease recognition based on leaf image is an essential research topic in the field of computer vision,where the key task is to find an effective way to represent the diseased leaf images.In this research,based on image processing techniques and pattern recognition methods,an apple leaf disease recognition method was proposed.A color transformation structure for the input RGB(Red,Green and Blue)image was designed firstly and then RGB model was converted to HSI(Hue,Saturation and Intensity),YUV and gray models.The background was removed based on a specific threshold value,and then the disease spot image was segmented with region growing algorithm(RGA).Thirty-eight classifying features of color,texture and shape were extracted from each spot image.To reduce the dimensionality of the feature space and improve the accuracy of the apple leaf disease identification,the most valuable features were selected by combining genetic algorithm(GA)and correlation based feature selection(CFS).Finally,the diseases were recognized by SVM classifier.In the proposed method,the selected feature subset was globally optimum.The experimental results of more than 90%correct identification rate on the apple diseased leaf image database which contains 90 disease images for there kinds of apple leaf diseases,powdery mildew,mosaic and rust,demonstrate that the proposed method is feasible and effective.展开更多
Purpose: The purpose of the study is to explore the potential use of nature language process(NLP) and machine learning(ML) techniques and intents to find a feasible strategy and effective approach to fulfill the NER t...Purpose: The purpose of the study is to explore the potential use of nature language process(NLP) and machine learning(ML) techniques and intents to find a feasible strategy and effective approach to fulfill the NER task for Web oriented person-specific information extraction.Design/methodology/approach: An SVM-based multi-classification approach combined with a set of rich NLP features derived from state-of-the-art NLP techniques has been proposed to fulfill the NER task. A group of experiments has been designed to investigate the influence of various NLP-based features to the performance of the system,especially the semantic features. Optimal parameter settings regarding with SVM models,including kernel functions,margin parameter of SVM model and the context window size,have been explored through experiments as well.Findings: The SVM-based multi-classification approach has been proved to be effective for the NER task. This work shows that NLP-based features are of great importance in datadriven NE recognition,particularly the semantic features. The study indicates that higher order kernel function may not be desirable for the specific classification problem in practical application. The simple linear-kernel SVM model performed better in this case. Moreover,the modified SVM models with uneven margin parameter are more common and flexible,which have been proved to solve the imbalanced data problem better.Research limitations/implications: The SVM-based approach for NER problem is only proved to be effective on limited experiment data. Further research need to be conducted on the large batch of real Web data. In addition,the performance of the NER system need be tested when incorporated into a complete IE framework.Originality/value: The specially designed experiments make it feasible to fully explore the characters of the data and obtain the optimal parameter settings for the NER task,leading to a preferable rate in recall,precision and F1measures. The overall system performance(F1value) for all types of name entities can achieve above 88.6%,which can meet the requirements for the practical application.展开更多
基金Supported by National Natural Science Foundation of China(Grant No.51475053)
文摘During the condition monitoring of a planetary gearbox, features are extracted from raw data for a fault diagnosis.However, different features have different sensitivity for identifying different fault types, and thus, the selection of a sensitive feature subset from an entire feature set and retaining as much of the class discriminatory information as possible has a directly effect on the accuracy of the classification results. In this paper, an improved hybrid feature selection technique(IHFST) that combines a distance evaluation technique(DET), Pearson’s correlation analysis, and an ad hoc technique is proposed. In IHFST, a temporary feature subset without irrelevant features is first selected according to the distance evaluation criterion of DET, and the Pearson’s correlation analysis and ad hoc technique are then employed to find and remove redundant features in the temporary feature subset, respectively, and hence,a sensitive feature subset without irrelevant or redundant features is selected from the entire feature set. Further, the k-means clustering method is applied to classify the different kinds of health conditions. The effectiveness of the proposed method was validated through several experiments carried out on a planetary gearbox with incipient cracks seeded in the tooth root of the sun gear, planet gear, and ring gear. The results show that the proposed method can successfully distinguish the different health conditions of a planetary gearbox, and achieves a better classification performance than other methods. This study proposes a sensitive feature subset selection method that achieves an obvious improvement in terms of the accuracy of the fault classification.
文摘In order to ensure that the large-scale application of photovoltaic power generation does not affect the stability of the grid, accurate photovoltaic (PV) power generation forecast is essential. A short-term PV power generation forecast method using the combination of K-means++, grey relational analysis (GRA) and support vector regression (SVR) based on feature selection (Hybrid Kmeans-GRA-SVR, HKGSVR) was proposed. The historical power data were clustered through the multi-index K-means++ algorithm and divided into ideal and non-ideal weather. The GRA algorithm was used to match the similar day and the nearest neighbor similar day of the prediction day. And selected appropriate input features for different weather types to train the SVR model. Under ideal weather, the average values of MAE, RMSE and R2 were 0.8101, 0.9608 kW and 99.66%, respectively. And this method reduced the average training time by 77.27% compared with the standard SVR model. Under non-ideal weather conditions, the average values of MAE, RMSE and R2 were 1.8337, 2.1379 kW and 98.47%, respectively. And this method reduced the average training time of the standard SVR model by 98.07%. The experimental results show that the prediction accuracy of the proposed model is significantly improved compared to the other five models, which verify the effectiveness of the method.
文摘In this paper, a feature selection method combining the reliefF and SVM-RFE algorithm is proposed. This algorithm integrates the weight vector from the reliefF into SVM-RFE method. In this method, the reliefF filters out many noisy features in the first stage. Then the new ranking criterion based on SVM-RFE method is applied to obtain the final feature subset. The SVM classifier is used to evaluate the final image classification accuracy. Experimental results show that our proposed relief- SVM-RFE algorithm can achieve significant improvements for feature selection in image classification.
文摘The dimensionality of data is increasing very rapidly,which creates challenges for most of the current mining and learning algorithms,such as large memory requirements and high computational costs.The literature includes much research on feature selection for supervised learning.However,feature selection for unsupervised learning has only recently been studied.Finding the subset of features in unsupervised learning that enhances the performance is challenging since the clusters are indeterminate.This work proposes a hybrid technique for unsupervised feature selection called GAk-MEANS,which combines the genetic algorithm(GA)approach with the classical k-Means algorithm.In the proposed algorithm,a new fitness func-tion is designed in addition to new smart crossover and mutation operators.The effectiveness of this algorithm is demonstrated on various datasets.Fur-thermore,the performance of GAk-MEANS has been compared with other genetic algorithms,such as the genetic algorithm using the Sammon Error Function and the genetic algorithm using the Sum of Squared Error Function.Additionally,the performance of GAk-MEANS is compared with the state-of-the-art statistical unsupervised feature selection techniques.Experimental results show that GAk-MEANS consistently selects subsets of features that result in better classification accuracy compared to others.In particular,GAk-MEANS is able to significantly reduce the size of the subset of selected features by an average of 86.35%(72%–96.14%),which leads to an increase of the accuracy by an average of 3.78%(1.05%–6.32%)compared to using all features.When compared with the genetic algorithm using the Sammon Error Function,GAk-MEANS is able to reduce the size of the subset of selected features by 41.29%on average,improve the accuracy by 5.37%,and reduce the time by 70.71%.When compared with the genetic algorithm using the Sum of Squared Error Function,GAk-MEANS on average is able to reduce the size of the subset of selected features by 15.91%,and improve the accuracy by 9.81%,but the time is increased by a factor of 3.When compared with the machine-learning based methods,we observed that GAk-MEANS is able to increase the accuracy by 13.67%on average with an 88.76%average increase in time.
文摘Feature selection is very important to obtain meaningful and interpretive clustering results from a clustering analysis. In the application of soil data clustering, there is a lack of good understanding of the response of clustering performance to different features subsets. In the present paper, we analyzed the performance differences between k-means, fuzzy c-means, and spectral clustering algorithms in the conditions of different feature subsets of soil data sets. The experimental results demonstrated that the performances of spectral clustering algorithm were generally better than those of k-means and fuzzy c-means with different features subsets. The feature subsets containing environmental attributes helped to improve clustering performances better than those having spatial attributes and produced more accurate and meaningful clustering results. Our results demonstrated that combination of spectral clustering algorithm with the feature subsets containing environmental attributes rather than spatial attributes may be a better choice in applications of soil data clustering.
文摘Many medical diagnosis applications are characterized by datasets that contain under-represented classes due to the fact that the disease is much rarer than the normal case. In such a situation classifiers such as decision trees and Na?ve Bayesian that generalize over the data are not the proper choice as classification methods. Case-based classifiers that can work on the samples seen so far are more appropriate for such a task. We propose to calculate the contingency table and class specific evaluation measures despite the overall accuracy for evaluation purposes of classifiers for these specific data characteristics. We evaluate the different options of our case-based classifier and compare the perform-ance to decision trees and Na?ve Bayesian. Finally, we give an outlook for further work.
基金Natural Science Foundation of China(grant Nos.61473237,61202170,and 61402331)It is also supported by the Shaanxi Provincial Natural Science Foundation Research Project(2014JM2-6096)+3 种基金Tianjin Research Program of Application Foundation and Advanced Technology(14JCYBJC42500)Tianjin science and technology correspondent project(16JCTPJC47300)the 2015 key projects of Tianjin science and technology support program(No.15ZCZDGX00200)the Fund of Tianjin Food Safety&Low Carbon Manufacturing Collaborative Innovation Center.
文摘Apple leaf disease is one of the main factors to constrain the apple production and quality.It takes a long time to detect the diseases by using the traditional diagnostic approach,thus farmers often miss the best time to prevent and treat the diseases.Apple leaf disease recognition based on leaf image is an essential research topic in the field of computer vision,where the key task is to find an effective way to represent the diseased leaf images.In this research,based on image processing techniques and pattern recognition methods,an apple leaf disease recognition method was proposed.A color transformation structure for the input RGB(Red,Green and Blue)image was designed firstly and then RGB model was converted to HSI(Hue,Saturation and Intensity),YUV and gray models.The background was removed based on a specific threshold value,and then the disease spot image was segmented with region growing algorithm(RGA).Thirty-eight classifying features of color,texture and shape were extracted from each spot image.To reduce the dimensionality of the feature space and improve the accuracy of the apple leaf disease identification,the most valuable features were selected by combining genetic algorithm(GA)and correlation based feature selection(CFS).Finally,the diseases were recognized by SVM classifier.In the proposed method,the selected feature subset was globally optimum.The experimental results of more than 90%correct identification rate on the apple diseased leaf image database which contains 90 disease images for there kinds of apple leaf diseases,powdery mildew,mosaic and rust,demonstrate that the proposed method is feasible and effective.
基金support by the Special Research Fundation for Young Teachers of Sun Yat-sen University(Grant No.2000-3161101)Humanity and Social Science Youth Foundation of Ministry of Educationof China(Grant No.08JC870013)
文摘Purpose: The purpose of the study is to explore the potential use of nature language process(NLP) and machine learning(ML) techniques and intents to find a feasible strategy and effective approach to fulfill the NER task for Web oriented person-specific information extraction.Design/methodology/approach: An SVM-based multi-classification approach combined with a set of rich NLP features derived from state-of-the-art NLP techniques has been proposed to fulfill the NER task. A group of experiments has been designed to investigate the influence of various NLP-based features to the performance of the system,especially the semantic features. Optimal parameter settings regarding with SVM models,including kernel functions,margin parameter of SVM model and the context window size,have been explored through experiments as well.Findings: The SVM-based multi-classification approach has been proved to be effective for the NER task. This work shows that NLP-based features are of great importance in datadriven NE recognition,particularly the semantic features. The study indicates that higher order kernel function may not be desirable for the specific classification problem in practical application. The simple linear-kernel SVM model performed better in this case. Moreover,the modified SVM models with uneven margin parameter are more common and flexible,which have been proved to solve the imbalanced data problem better.Research limitations/implications: The SVM-based approach for NER problem is only proved to be effective on limited experiment data. Further research need to be conducted on the large batch of real Web data. In addition,the performance of the NER system need be tested when incorporated into a complete IE framework.Originality/value: The specially designed experiments make it feasible to fully explore the characters of the data and obtain the optimal parameter settings for the NER task,leading to a preferable rate in recall,precision and F1measures. The overall system performance(F1value) for all types of name entities can achieve above 88.6%,which can meet the requirements for the practical application.