The goal of this study was to optimize the constitutive parameters of foundation soils using a k-means algorithm with clustering analysis. A database was collected from unconfined compression tests, Proctor tests and ...The goal of this study was to optimize the constitutive parameters of foundation soils using a k-means algorithm with clustering analysis. A database was collected from unconfined compression tests, Proctor tests and grain distribution tests of soils taken from three different types of foundation pits: raft foundations, partial raft foundations and strip foundations. k-means algorithm with clustering analysis was applied to determine the most appropriate foundation type given the un- confined compression strengths and other parameters of the different soils.展开更多
The k-means algorithm is a popular data clustering technique due to its speed and simplicity. However, it is susceptible to issues such as sensitivity to the chosen seeds, and inaccurate clusters due to poor initial s...The k-means algorithm is a popular data clustering technique due to its speed and simplicity. However, it is susceptible to issues such as sensitivity to the chosen seeds, and inaccurate clusters due to poor initial seeds, particularly in complex datasets or datasets with non-spherical clusters. In this paper, a Comprehensive K-Means Clustering algorithm is presented, in which multiple trials of k-means are performed on a given dataset. The clustering results from each trial are transformed into a five-dimensional data point, containing the scope values of the x and y coordinates of the clusters along with the number of points within that cluster. A graph is then generated displaying the configuration of these points using Principal Component Analysis (PCA), from which we can observe and determine the common clustering patterns in the dataset. The robustness and strength of these patterns are then examined by observing the variance of the results of each trial, wherein a different subset of the data keeping a certain percentage of original data points is clustered. By aggregating information from multiple trials, we can distinguish clusters that consistently emerge across different runs from those that are more sensitive or unlikely, hence deriving more reliable conclusions about the underlying structure of complex datasets. Our experiments show that our algorithm is able to find the most common associations between different dimensions of data over multiple trials, often more accurately than other algorithms, as well as measure stability of these clusters, an ability that other k-means algorithms lack.展开更多
Efficient iterative unsupervised machine learning involving probabilistic clustering analysis with the expectation-maximization(EM)clustering algorithm is applied to categorize reservoir facies by exploiting latent an...Efficient iterative unsupervised machine learning involving probabilistic clustering analysis with the expectation-maximization(EM)clustering algorithm is applied to categorize reservoir facies by exploiting latent and observable well-log variables from a clastic reservoir in the Majnoon oilfield,southern Iraq.The observable well-log variables consist of conventional open-hole,well-log data and the computer-processed interpretation of gamma rays,bulk density,neutron porosity,compressional sonic,deep resistivity,shale volume,total porosity,and water saturation,from three wells located in the Nahr Umr reservoir.The latent variables include shale volume and water saturation.The EM algorithm efficiently characterizes electrofacies through iterative machine learning to identify the local maximum likelihood estimates(MLE)of the observable and latent variables in the studied dataset.The optimized EM model developed successfully predicts the core-derived facies classification in two of the studied wells.The EM model clusters the data into three distinctive reservoir electrofacies(F1,F2,and F3).F1 represents a gas-bearing electrofacies with low shale volume(Vsh)and water saturation(Sw)and high porosity and permeability values identifying it as an attractive reservoir target.The results of the EM model are validated using nuclear magnetic resonance(NMR)data from the third studied well for which no cores were recovered.The NMR results confirm the effectiveness and accuracy of the EM model in predicting electrofacies.The utilization of the EM algorithm for electrofacies classification/cluster analysis is innovative.Specifically,the clusters it establishes are less rigidly constrained than those derived from the more commonly used K-means clustering method.The EM methodology developed generates dependable electrofacies estimates in the studied reservoir intervals where core samples are not available.Therefore,once calibrated with core data in some wells,the model is suitable for application to other wells that lack core data.展开更多
A significant portion of Landslide Early Warning Systems (LEWS) relies on the definition of operational thresholds and the monitoring of cumulative rainfall for alert issuance. These thresholds can be obtained in vari...A significant portion of Landslide Early Warning Systems (LEWS) relies on the definition of operational thresholds and the monitoring of cumulative rainfall for alert issuance. These thresholds can be obtained in various ways, but most often they are based on previous landslide data. This approach introduces several limitations. For instance, there is a requirement for the location to have been previously monitored in some way to have this type of information recorded. Another significant limitation is the need for information regarding the location and timing of incidents. Despite the current ease of obtaining location information (GPS, drone images, etc.), the timing of the event remains challenging to ascertain for a considerable portion of landslide data. Concerning rainfall monitoring, there are multiple ways to consider it, for instance, examining accumulations over various intervals (1 h, 6 h, 24 h, 72 h), as well as in the calculation of effective rainfall, which represents the precipitation that actually infiltrates the soil. However, in the vast majority of cases, both the thresholds and the rain monitoring approach are defined manually and subjectively, relying on the operators’ experience. This makes the process labor-intensive and time-consuming, hindering the establishment of a truly standardized and rapidly scalable methodology on a large scale. In this work, we propose a Landslides Early Warning System (LEWS) based on the concept of rainfall half-life and the determination of thresholds using Cluster Analysis and data inversion. The system is designed to be applied in extensive monitoring networks, such as the one utilized by Cemaden, Brazil’s National Center for Monitoring and Early Warning of Natural Disasters.展开更多
This paper investigates the design essence of Chinese classical private gardens,integrating their design elements and fundamental principles.It systematically analyzes the unique characteristics and differences among ...This paper investigates the design essence of Chinese classical private gardens,integrating their design elements and fundamental principles.It systematically analyzes the unique characteristics and differences among classical private gardens in the Northern,Jiangnan,and Lingnan regions.The study examines nine classical private gardens from Northern China,Jiangnan,and Lingnan by utilizing the advanced tool of principal component cluster analysis.Based on literature analysis and field research,273 variables were selected for principal component analysis,from which four components with higher contribution rates were chosen for further study.Subsequently,we employed clustering analysis techniques to compare the differences among the three types of gardens.The results reveal that the first principal component effectively highlights the differences between Jiangnan and Lingnan private gardens.The second principal component serves as the key to defining the types of Northern private gardens and distinguishing them from the other two types,and the third principal component indicates that Lingnan private gardens can be categorized into two distinct types as well.展开更多
Various types of plasma events emerge in specific parameter ranges and exhibit similar characteristics in diagnostic signals,which can be applied to identify these events.A semisupervised machine learning algorithm,th...Various types of plasma events emerge in specific parameter ranges and exhibit similar characteristics in diagnostic signals,which can be applied to identify these events.A semisupervised machine learning algorithm,the k-means clustering algorithm,is utilized to investigate and identify plasma events in the J-TEXT plasma.This method can cluster diverse plasma events with homogeneous features,and then these events can be identified if given few manually labeled examples based on physical understanding.A survey of clustered events reveals that the k-means algorithm can make plasma events(rotating tearing mode,sawtooth oscillations,and locked mode)gathering in Euclidean space composed of multi-dimensional diagnostic data,like soft x-ray emission intensity,edge toroidal rotation velocity,the Mirnov signal amplitude and so on.Based on the cluster analysis results,an approximate analytical model is proposed to rapidly identify plasma events in the J-TEXT plasma.The cluster analysis method is conducive to data markers of massive diagnostic data.展开更多
Cluster analysis is one of the major data analysis methods widely used for many practical applications in emerging areas of data mining. A good clustering method will produce high quality clusters with high intra-clus...Cluster analysis is one of the major data analysis methods widely used for many practical applications in emerging areas of data mining. A good clustering method will produce high quality clusters with high intra-cluster similarity and low inter-cluster similarity. Clustering techniques are applied in different domains to predict future trends of available data and its uses for the real world. This research work is carried out to find the performance of two of the most delegated, partition based clustering algorithms namely k-Means and k-Medoids. A state of art analysis of these two algorithms is implemented and performance is analyzed based on their clustering result quality by means of its execution time and other components. Telecommunication data is the source data for this analysis. The connection oriented broadband data is given as input to find the clustering quality of the algorithms. Distance between the server locations and their connection is considered for clustering. Execution time for each algorithm is analyzed and the results are compared with one another. Results found in comparison study are satisfactory for the chosen application.展开更多
With the advent of the era of big data and the development and construction of smart campuses,the campus is gradually moving towards digitalization,networking and informationization.The campus card is an important par...With the advent of the era of big data and the development and construction of smart campuses,the campus is gradually moving towards digitalization,networking and informationization.The campus card is an important part of the construction of a smart campus,and the massive data it generates can indirectly reflect the living conditions of students at school.In the face of the campus card,how to quickly and accurately obtain the information required by users from the massive data sets has become an urgent problem that needs to be solved.This paper proposes a data mining algorithm based on K-Means clustering and time series.It analyzes the consumption data of a college student’s card to deeply mine and analyze the daily life consumer behavior habits of students,and to make an accurate judgment on the specific life consumer behavior.The algorithm proposed in this paper provides a practical reference for the construction of smart campuses in universities,and has important theoretical and application values.展开更多
Reservoir classification is a key link in reservoir evaluation.However,traditional manual means are inefficient,subjective,and classification standards are not uniform.Therefore,taking the Mishrif Formation of the Wes...Reservoir classification is a key link in reservoir evaluation.However,traditional manual means are inefficient,subjective,and classification standards are not uniform.Therefore,taking the Mishrif Formation of the Western Iraq as an example,a new reservoir classification and discrimination method is established by using the K-means clustering method and the Bayesian discrimination method.These methods are applied to non-cored wells to calculate the discrimination accuracy of the reservoir type,and thus the main reasons for low accuracy of reservoir discrimination are clarified.The results show that the discrimination accuracy of reservoir type based on K-means clustering and Bayesian stepwise discrimination is strongly related to the accuracy of the core data.The discrimination accuracy rate of TypeⅠ,TypeⅡ,and TypeⅤreservoirs is found to be significantly higher than that of TypeⅢand TypeⅣreservoirs using the method of combining K-means clustering and Bayesian theory based on logging data.Although the recognition accuracy of the new methodology for the TypeⅣreservoir is low,with average accuracy the new method has reached more than 82%in the entire study area,which lays a good foundation for rapid and accurate discrimination of reservoir types and the fine evaluation of a reservoir.展开更多
Several pests feed on leaves,stems,bases,and the entire plant,causing plant illnesses.As a result,it is vital to identify and eliminate the disease before causing any damage to plants.Manually detecting plant disease ...Several pests feed on leaves,stems,bases,and the entire plant,causing plant illnesses.As a result,it is vital to identify and eliminate the disease before causing any damage to plants.Manually detecting plant disease and treating it is pretty challenging in this period.Image processing is employed to detect plant disease since it requires much effort and an extended processing period.The main goal of this study is to discover the disease that affects the plants by creating an image processing system that can recognize and classify four different forms of plant diseases,including Phytophthora infestans,Fusarium graminearum,Puccinia graminis,tomato yellow leaf curl.Therefore,this work uses the Support vector machine(SVM)classifier to detect and classify the plant disease using various steps like image acquisition,Pre-processing,Segmentation,feature extraction,and classification.The gray level co-occurrence matrix(GLCM)and the local binary pattern features(LBP)are used to identify the disease-affected portion of the plant leaf.According to experimental data,the proposed technology can correctly detect and diagnose plant sickness with a 97.2 percent accuracy.展开更多
The COVID-19 pandemic has caused an unprecedented spike in confirmed cases in 230 countries globally. In this work, a set of data from the COVID-19 coronavirus outbreak has been subjected to two well-known unsupervise...The COVID-19 pandemic has caused an unprecedented spike in confirmed cases in 230 countries globally. In this work, a set of data from the COVID-19 coronavirus outbreak has been subjected to two well-known unsupervised learning techniques: K-means clustering and correlation. The COVID-19 virus has infected several nations, and K-means automatically looks for undiscovered clusters of those infections. To examine the spread of COVID-19 before a vaccine becomes widely available, this work has used unsupervised approaches to identify the crucial county-level confirmed cases, death cases, recover cases, total_cases_per_million, and total_deaths_per_million aspects of county-level variables. We combined countries into significant clusters using this feature subspace to assist more in-depth disease analysis efforts. As a result, we used a clustering technique to examine various trends in COVID-19 incidence and mortality across nations. This technique took the key components of a trajectory and incorporates them into a K-means clustering process. We separated the trend lines into measures that characterize various features of a trend. The measurements were first reduced in dimension, then clustered using a K-means algorithm. This method was used to individually calculate the incidence and death rates and then compare them.展开更多
In view of the composition analysis and identification of ancient glass products, L1 regularization, K-Means cluster analysis, elbow rule and other methods were comprehensively used to build logical regression, cluste...In view of the composition analysis and identification of ancient glass products, L1 regularization, K-Means cluster analysis, elbow rule and other methods were comprehensively used to build logical regression, cluster analysis, hyper-parameter test and other models, and SPSS, Python and other tools were used to obtain the classification rules of glass products under different fluxes, sub classification under different chemical compositions, hyper-parameter K value test and rationality analysis. Research can provide theoretical support for the protection and restoration of ancient glass relics.展开更多
In allusion to the disadvantage of having to obtain the number of clusters of data sets in advance and the sensitivity to selecting initial clustering centers in the k-means algorithm, an improved k-means clustering a...In allusion to the disadvantage of having to obtain the number of clusters of data sets in advance and the sensitivity to selecting initial clustering centers in the k-means algorithm, an improved k-means clustering algorithm is proposed. First, the concept of a silhouette coefficient is introduced, and the optimal clustering number Kopt of a data set with unknown class information is confirmed by calculating the silhouette coefficient of objects in clusters under different K values. Then the distribution of the data set is obtained through hierarchical clustering and the initial clustering-centers are confirmed. Finally, the clustering is completed by the traditional k-means clustering. By the theoretical analysis, it is proved that the improved k-means clustering algorithm has proper computational complexity. The experimental results of IRIS testing data set show that the algorithm can distinguish different clusters reasonably and recognize the outliers efficiently, and the entropy generated by the algorithm is lower.展开更多
Inter-simple sequence repeat(ISSR) molecular markers were applied to analyze the genetic diversity and clustering of 48 introduced and bred cultivars of Olea euyopaea L. Totally 106 DNA bands were amplified by 11 sc...Inter-simple sequence repeat(ISSR) molecular markers were applied to analyze the genetic diversity and clustering of 48 introduced and bred cultivars of Olea euyopaea L. Totally 106 DNA bands were amplified by 11 screened primers, including 99 polymorphic bands; the percentage of polymorphic loci was 93.40%, indicating a rich genetic diversity in Olea euyopaea L. germplasm resources. Based on Nei's genetic distances between various cultivars, a dendrogram of 48 cultivars of Olea euyopaea L. was constructed using unweighted pair-group(UPMGA)method,which showed that 48 cultivars were clustered into four main categories; 84.6% of native cultivars were clustered into two categories; most of introduced cultivars were clustered based on their sources and main usages but not on their geographic origins. This study will provide references for the utilization and further genetic improvement of Olea euyopaea L. germplasm resources.展开更多
In order to mine production and security information from security supervising data and to ensure security and safety involved in production and decision-making,a clustering analysis algorithm for security supervising...In order to mine production and security information from security supervising data and to ensure security and safety involved in production and decision-making,a clustering analysis algorithm for security supervising data based on a semantic description in coal mines is studied.First,the semantic and numerical-based hybrid description method of security supervising data in coal mines is described.Secondly,the similarity measurement method of semantic and numerical data are separately given and a weight-based hybrid similarity measurement method for the security supervising data based on a semantic description in coal mines is presented.Thirdly,taking the hybrid similarity measurement method as the distance criteria and using a grid methodology for reference,an improved CURE clustering algorithm based on the grid is presented.Finally,the simulation results of a security supervising data set in coal mines validate the efficiency of the algorithm.展开更多
In clustering algorithms,the selection of neighbors significantly affects the quality of the final clustering results.While various neighbor relationships exist,such as K-nearest neighbors,natural neighbors,and shared...In clustering algorithms,the selection of neighbors significantly affects the quality of the final clustering results.While various neighbor relationships exist,such as K-nearest neighbors,natural neighbors,and shared neighbors,most neighbor relationships can only handle single structural relationships,and the identification accuracy is low for datasets with multiple structures.In life,people’s first instinct for complex things is to divide them into multiple parts to complete.Partitioning the dataset into more sub-graphs is a good idea approach to identifying complex structures.Taking inspiration from this,we propose a novel neighbor method:Shared Natural Neighbors(SNaN).To demonstrate the superiority of this neighbor method,we propose a shared natural neighbors-based hierarchical clustering algorithm for discovering arbitrary-shaped clusters(HC-SNaN).Our algorithm excels in identifying both spherical clusters and manifold clusters.Tested on synthetic datasets and real-world datasets,HC-SNaN demonstrates significant advantages over existing clustering algorithms,particularly when dealing with datasets containing arbitrary shapes.展开更多
[Objective] This study aimed to develop ACGM markers for the clustering analysis of large grained Brassica napus materials. [Method] A total of 44 pairs of ACGM primers were designed according to 18 genes related to A...[Objective] This study aimed to develop ACGM markers for the clustering analysis of large grained Brassica napus materials. [Method] A total of 44 pairs of ACGM primers were designed according to 18 genes related to Arabidopsis grain development and their homologous rape EST sequences. After electrophoresis, 18 pairs of ACGM primers were selected for the clustering analysis of 16 larger grained samples and four fine grained samples of rapeseed. [Result] PCR result showed that 2-6 specific bands were respectively amplified by each pair of primes, and all the bands were polymorphic and repeatable, suggesting that the optimized ACGM markers were useful for clustering analysis of B. napus species. Clustering analysis revealed that the 20 rapeseed samples were divided into three clusters A, B, and C at similarity coefficient 0.6. Then, the clusters A and B were further divided into five sub clusters A1, A2, A3, B1 and B2 at similarity coefficient 0.67. [Conclusion] This study will provide theoretical and practical values for rape breeding.展开更多
The recent pandemic crisis has highlighted the importance of the availability and management of health data to respond quickly and effectively to health emergencies, while respecting the fundamental rights of every in...The recent pandemic crisis has highlighted the importance of the availability and management of health data to respond quickly and effectively to health emergencies, while respecting the fundamental rights of every individual. In this context, it is essential to find a balance between the protection of privacy and the safeguarding of public health, using tools that guarantee transparency and consent to the processing of data by the population. This work, starting from a pilot investigation conducted in the Polyclinic of Bari as part of the Horizon Europe Seeds project entitled “Multidisciplinary analysis of technological tracing models of contagion: the protection of rights in the management of health data”, has the objective of promoting greater patient awareness regarding the processing of their health data and the protection of privacy. The methodology used the PHICAT (Personal Health Information Competence Assessment Tool) as a tool and, through the administration of a questionnaire, the aim was to evaluate the patients’ ability to express their consent to the release and processing of health data. The results that emerged were analyzed in relation to the 4 domains in which the process is divided which allows evaluating the patients’ ability to express a conscious choice and, also, in relation to the socio-demographic and clinical characteristics of the patients themselves. This study can contribute to understanding patients’ ability to give their consent and improve information regarding the management of health data by increasing confidence in granting the use of their data for research and clinical management.展开更多
文摘The goal of this study was to optimize the constitutive parameters of foundation soils using a k-means algorithm with clustering analysis. A database was collected from unconfined compression tests, Proctor tests and grain distribution tests of soils taken from three different types of foundation pits: raft foundations, partial raft foundations and strip foundations. k-means algorithm with clustering analysis was applied to determine the most appropriate foundation type given the un- confined compression strengths and other parameters of the different soils.
文摘The k-means algorithm is a popular data clustering technique due to its speed and simplicity. However, it is susceptible to issues such as sensitivity to the chosen seeds, and inaccurate clusters due to poor initial seeds, particularly in complex datasets or datasets with non-spherical clusters. In this paper, a Comprehensive K-Means Clustering algorithm is presented, in which multiple trials of k-means are performed on a given dataset. The clustering results from each trial are transformed into a five-dimensional data point, containing the scope values of the x and y coordinates of the clusters along with the number of points within that cluster. A graph is then generated displaying the configuration of these points using Principal Component Analysis (PCA), from which we can observe and determine the common clustering patterns in the dataset. The robustness and strength of these patterns are then examined by observing the variance of the results of each trial, wherein a different subset of the data keeping a certain percentage of original data points is clustered. By aggregating information from multiple trials, we can distinguish clusters that consistently emerge across different runs from those that are more sensitive or unlikely, hence deriving more reliable conclusions about the underlying structure of complex datasets. Our experiments show that our algorithm is able to find the most common associations between different dimensions of data over multiple trials, often more accurately than other algorithms, as well as measure stability of these clusters, an ability that other k-means algorithms lack.
文摘Efficient iterative unsupervised machine learning involving probabilistic clustering analysis with the expectation-maximization(EM)clustering algorithm is applied to categorize reservoir facies by exploiting latent and observable well-log variables from a clastic reservoir in the Majnoon oilfield,southern Iraq.The observable well-log variables consist of conventional open-hole,well-log data and the computer-processed interpretation of gamma rays,bulk density,neutron porosity,compressional sonic,deep resistivity,shale volume,total porosity,and water saturation,from three wells located in the Nahr Umr reservoir.The latent variables include shale volume and water saturation.The EM algorithm efficiently characterizes electrofacies through iterative machine learning to identify the local maximum likelihood estimates(MLE)of the observable and latent variables in the studied dataset.The optimized EM model developed successfully predicts the core-derived facies classification in two of the studied wells.The EM model clusters the data into three distinctive reservoir electrofacies(F1,F2,and F3).F1 represents a gas-bearing electrofacies with low shale volume(Vsh)and water saturation(Sw)and high porosity and permeability values identifying it as an attractive reservoir target.The results of the EM model are validated using nuclear magnetic resonance(NMR)data from the third studied well for which no cores were recovered.The NMR results confirm the effectiveness and accuracy of the EM model in predicting electrofacies.The utilization of the EM algorithm for electrofacies classification/cluster analysis is innovative.Specifically,the clusters it establishes are less rigidly constrained than those derived from the more commonly used K-means clustering method.The EM methodology developed generates dependable electrofacies estimates in the studied reservoir intervals where core samples are not available.Therefore,once calibrated with core data in some wells,the model is suitable for application to other wells that lack core data.
文摘A significant portion of Landslide Early Warning Systems (LEWS) relies on the definition of operational thresholds and the monitoring of cumulative rainfall for alert issuance. These thresholds can be obtained in various ways, but most often they are based on previous landslide data. This approach introduces several limitations. For instance, there is a requirement for the location to have been previously monitored in some way to have this type of information recorded. Another significant limitation is the need for information regarding the location and timing of incidents. Despite the current ease of obtaining location information (GPS, drone images, etc.), the timing of the event remains challenging to ascertain for a considerable portion of landslide data. Concerning rainfall monitoring, there are multiple ways to consider it, for instance, examining accumulations over various intervals (1 h, 6 h, 24 h, 72 h), as well as in the calculation of effective rainfall, which represents the precipitation that actually infiltrates the soil. However, in the vast majority of cases, both the thresholds and the rain monitoring approach are defined manually and subjectively, relying on the operators’ experience. This makes the process labor-intensive and time-consuming, hindering the establishment of a truly standardized and rapidly scalable methodology on a large scale. In this work, we propose a Landslides Early Warning System (LEWS) based on the concept of rainfall half-life and the determination of thresholds using Cluster Analysis and data inversion. The system is designed to be applied in extensive monitoring networks, such as the one utilized by Cemaden, Brazil’s National Center for Monitoring and Early Warning of Natural Disasters.
文摘This paper investigates the design essence of Chinese classical private gardens,integrating their design elements and fundamental principles.It systematically analyzes the unique characteristics and differences among classical private gardens in the Northern,Jiangnan,and Lingnan regions.The study examines nine classical private gardens from Northern China,Jiangnan,and Lingnan by utilizing the advanced tool of principal component cluster analysis.Based on literature analysis and field research,273 variables were selected for principal component analysis,from which four components with higher contribution rates were chosen for further study.Subsequently,we employed clustering analysis techniques to compare the differences among the three types of gardens.The results reveal that the first principal component effectively highlights the differences between Jiangnan and Lingnan private gardens.The second principal component serves as the key to defining the types of Northern private gardens and distinguishing them from the other two types,and the third principal component indicates that Lingnan private gardens can be categorized into two distinct types as well.
基金supported by the National Magnetic Confinement Fusion Science Program of China(Nos.2018YFE0301104 and 2018YFE0301100)National Natural Science Foundation of China(Nos.12075096 and 51821005)。
文摘Various types of plasma events emerge in specific parameter ranges and exhibit similar characteristics in diagnostic signals,which can be applied to identify these events.A semisupervised machine learning algorithm,the k-means clustering algorithm,is utilized to investigate and identify plasma events in the J-TEXT plasma.This method can cluster diverse plasma events with homogeneous features,and then these events can be identified if given few manually labeled examples based on physical understanding.A survey of clustered events reveals that the k-means algorithm can make plasma events(rotating tearing mode,sawtooth oscillations,and locked mode)gathering in Euclidean space composed of multi-dimensional diagnostic data,like soft x-ray emission intensity,edge toroidal rotation velocity,the Mirnov signal amplitude and so on.Based on the cluster analysis results,an approximate analytical model is proposed to rapidly identify plasma events in the J-TEXT plasma.The cluster analysis method is conducive to data markers of massive diagnostic data.
文摘Cluster analysis is one of the major data analysis methods widely used for many practical applications in emerging areas of data mining. A good clustering method will produce high quality clusters with high intra-cluster similarity and low inter-cluster similarity. Clustering techniques are applied in different domains to predict future trends of available data and its uses for the real world. This research work is carried out to find the performance of two of the most delegated, partition based clustering algorithms namely k-Means and k-Medoids. A state of art analysis of these two algorithms is implemented and performance is analyzed based on their clustering result quality by means of its execution time and other components. Telecommunication data is the source data for this analysis. The connection oriented broadband data is given as input to find the clustering quality of the algorithms. Distance between the server locations and their connection is considered for clustering. Execution time for each algorithm is analyzed and the results are compared with one another. Results found in comparison study are satisfactory for the chosen application.
基金Science and Technology Project of Guizhou Province of China(Grant QKHJC[2019]1403)and(Grant QKHJC[2019]1041)Guizhou Province Colleges and Universities Top Technology Talent Support Program(Grant QJHKY[2016]068).
文摘With the advent of the era of big data and the development and construction of smart campuses,the campus is gradually moving towards digitalization,networking and informationization.The campus card is an important part of the construction of a smart campus,and the massive data it generates can indirectly reflect the living conditions of students at school.In the face of the campus card,how to quickly and accurately obtain the information required by users from the massive data sets has become an urgent problem that needs to be solved.This paper proposes a data mining algorithm based on K-Means clustering and time series.It analyzes the consumption data of a college student’s card to deeply mine and analyze the daily life consumer behavior habits of students,and to make an accurate judgment on the specific life consumer behavior.The algorithm proposed in this paper provides a practical reference for the construction of smart campuses in universities,and has important theoretical and application values.
基金funded by the National Key Research and Development Program(Grant No.2018YFC0807804-2)。
文摘Reservoir classification is a key link in reservoir evaluation.However,traditional manual means are inefficient,subjective,and classification standards are not uniform.Therefore,taking the Mishrif Formation of the Western Iraq as an example,a new reservoir classification and discrimination method is established by using the K-means clustering method and the Bayesian discrimination method.These methods are applied to non-cored wells to calculate the discrimination accuracy of the reservoir type,and thus the main reasons for low accuracy of reservoir discrimination are clarified.The results show that the discrimination accuracy of reservoir type based on K-means clustering and Bayesian stepwise discrimination is strongly related to the accuracy of the core data.The discrimination accuracy rate of TypeⅠ,TypeⅡ,and TypeⅤreservoirs is found to be significantly higher than that of TypeⅢand TypeⅣreservoirs using the method of combining K-means clustering and Bayesian theory based on logging data.Although the recognition accuracy of the new methodology for the TypeⅣreservoir is low,with average accuracy the new method has reached more than 82%in the entire study area,which lays a good foundation for rapid and accurate discrimination of reservoir types and the fine evaluation of a reservoir.
基金supported by Princess Nourah bint Abdulrahman University Researchers Supporting Project number(PNURSP2023R104)Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.
文摘Several pests feed on leaves,stems,bases,and the entire plant,causing plant illnesses.As a result,it is vital to identify and eliminate the disease before causing any damage to plants.Manually detecting plant disease and treating it is pretty challenging in this period.Image processing is employed to detect plant disease since it requires much effort and an extended processing period.The main goal of this study is to discover the disease that affects the plants by creating an image processing system that can recognize and classify four different forms of plant diseases,including Phytophthora infestans,Fusarium graminearum,Puccinia graminis,tomato yellow leaf curl.Therefore,this work uses the Support vector machine(SVM)classifier to detect and classify the plant disease using various steps like image acquisition,Pre-processing,Segmentation,feature extraction,and classification.The gray level co-occurrence matrix(GLCM)and the local binary pattern features(LBP)are used to identify the disease-affected portion of the plant leaf.According to experimental data,the proposed technology can correctly detect and diagnose plant sickness with a 97.2 percent accuracy.
文摘The COVID-19 pandemic has caused an unprecedented spike in confirmed cases in 230 countries globally. In this work, a set of data from the COVID-19 coronavirus outbreak has been subjected to two well-known unsupervised learning techniques: K-means clustering and correlation. The COVID-19 virus has infected several nations, and K-means automatically looks for undiscovered clusters of those infections. To examine the spread of COVID-19 before a vaccine becomes widely available, this work has used unsupervised approaches to identify the crucial county-level confirmed cases, death cases, recover cases, total_cases_per_million, and total_deaths_per_million aspects of county-level variables. We combined countries into significant clusters using this feature subspace to assist more in-depth disease analysis efforts. As a result, we used a clustering technique to examine various trends in COVID-19 incidence and mortality across nations. This technique took the key components of a trajectory and incorporates them into a K-means clustering process. We separated the trend lines into measures that characterize various features of a trend. The measurements were first reduced in dimension, then clustered using a K-means algorithm. This method was used to individually calculate the incidence and death rates and then compare them.
文摘In view of the composition analysis and identification of ancient glass products, L1 regularization, K-Means cluster analysis, elbow rule and other methods were comprehensively used to build logical regression, cluster analysis, hyper-parameter test and other models, and SPSS, Python and other tools were used to obtain the classification rules of glass products under different fluxes, sub classification under different chemical compositions, hyper-parameter K value test and rationality analysis. Research can provide theoretical support for the protection and restoration of ancient glass relics.
基金The National Natural Science Foundation of China(No50674086)Specialized Research Fund for the Doctoral Program of Higher Education (No20060290508)the Youth Scientific Research Foundation of China University of Mining and Technology (No2006A047)
文摘In allusion to the disadvantage of having to obtain the number of clusters of data sets in advance and the sensitivity to selecting initial clustering centers in the k-means algorithm, an improved k-means clustering algorithm is proposed. First, the concept of a silhouette coefficient is introduced, and the optimal clustering number Kopt of a data set with unknown class information is confirmed by calculating the silhouette coefficient of objects in clusters under different K values. Then the distribution of the data set is obtained through hierarchical clustering and the initial clustering-centers are confirmed. Finally, the clustering is completed by the traditional k-means clustering. By the theoretical analysis, it is proved that the improved k-means clustering algorithm has proper computational complexity. The experimental results of IRIS testing data set show that the algorithm can distinguish different clusters reasonably and recognize the outliers efficiently, and the entropy generated by the algorithm is lower.
基金Supported by Key Project of New Product Development in Yunnan Province(2009BB006)~~
文摘Inter-simple sequence repeat(ISSR) molecular markers were applied to analyze the genetic diversity and clustering of 48 introduced and bred cultivars of Olea euyopaea L. Totally 106 DNA bands were amplified by 11 screened primers, including 99 polymorphic bands; the percentage of polymorphic loci was 93.40%, indicating a rich genetic diversity in Olea euyopaea L. germplasm resources. Based on Nei's genetic distances between various cultivars, a dendrogram of 48 cultivars of Olea euyopaea L. was constructed using unweighted pair-group(UPMGA)method,which showed that 48 cultivars were clustered into four main categories; 84.6% of native cultivars were clustered into two categories; most of introduced cultivars were clustered based on their sources and main usages but not on their geographic origins. This study will provide references for the utilization and further genetic improvement of Olea euyopaea L. germplasm resources.
基金The National Natural Science Foundation of China(No.50674086)Specialized Research Fund for the Doctoral Program of Higher Education(No.20060290508)the Postdoctoral Scientific Program of Jiangsu Province(No.0701045B)
文摘In order to mine production and security information from security supervising data and to ensure security and safety involved in production and decision-making,a clustering analysis algorithm for security supervising data based on a semantic description in coal mines is studied.First,the semantic and numerical-based hybrid description method of security supervising data in coal mines is described.Secondly,the similarity measurement method of semantic and numerical data are separately given and a weight-based hybrid similarity measurement method for the security supervising data based on a semantic description in coal mines is presented.Thirdly,taking the hybrid similarity measurement method as the distance criteria and using a grid methodology for reference,an improved CURE clustering algorithm based on the grid is presented.Finally,the simulation results of a security supervising data set in coal mines validate the efficiency of the algorithm.
基金This work was supported by Science and Technology Research Program of Chongqing Municipal Education Commission(KJZD-M202300502,KJQN201800539).
文摘In clustering algorithms,the selection of neighbors significantly affects the quality of the final clustering results.While various neighbor relationships exist,such as K-nearest neighbors,natural neighbors,and shared neighbors,most neighbor relationships can only handle single structural relationships,and the identification accuracy is low for datasets with multiple structures.In life,people’s first instinct for complex things is to divide them into multiple parts to complete.Partitioning the dataset into more sub-graphs is a good idea approach to identifying complex structures.Taking inspiration from this,we propose a novel neighbor method:Shared Natural Neighbors(SNaN).To demonstrate the superiority of this neighbor method,we propose a shared natural neighbors-based hierarchical clustering algorithm for discovering arbitrary-shaped clusters(HC-SNaN).Our algorithm excels in identifying both spherical clusters and manifold clusters.Tested on synthetic datasets and real-world datasets,HC-SNaN demonstrates significant advantages over existing clustering algorithms,particularly when dealing with datasets containing arbitrary shapes.
基金Supported by the National Natural Science Foundation of China(30860147)Open Funds of National Key Laboratory of Crop Genetic Improvement(ZK200902)Natural Science Foundation of Yunnan Province(2011FB117)~~
文摘[Objective] This study aimed to develop ACGM markers for the clustering analysis of large grained Brassica napus materials. [Method] A total of 44 pairs of ACGM primers were designed according to 18 genes related to Arabidopsis grain development and their homologous rape EST sequences. After electrophoresis, 18 pairs of ACGM primers were selected for the clustering analysis of 16 larger grained samples and four fine grained samples of rapeseed. [Result] PCR result showed that 2-6 specific bands were respectively amplified by each pair of primes, and all the bands were polymorphic and repeatable, suggesting that the optimized ACGM markers were useful for clustering analysis of B. napus species. Clustering analysis revealed that the 20 rapeseed samples were divided into three clusters A, B, and C at similarity coefficient 0.6. Then, the clusters A and B were further divided into five sub clusters A1, A2, A3, B1 and B2 at similarity coefficient 0.67. [Conclusion] This study will provide theoretical and practical values for rape breeding.
文摘The recent pandemic crisis has highlighted the importance of the availability and management of health data to respond quickly and effectively to health emergencies, while respecting the fundamental rights of every individual. In this context, it is essential to find a balance between the protection of privacy and the safeguarding of public health, using tools that guarantee transparency and consent to the processing of data by the population. This work, starting from a pilot investigation conducted in the Polyclinic of Bari as part of the Horizon Europe Seeds project entitled “Multidisciplinary analysis of technological tracing models of contagion: the protection of rights in the management of health data”, has the objective of promoting greater patient awareness regarding the processing of their health data and the protection of privacy. The methodology used the PHICAT (Personal Health Information Competence Assessment Tool) as a tool and, through the administration of a questionnaire, the aim was to evaluate the patients’ ability to express their consent to the release and processing of health data. The results that emerged were analyzed in relation to the 4 domains in which the process is divided which allows evaluating the patients’ ability to express a conscious choice and, also, in relation to the socio-demographic and clinical characteristics of the patients themselves. This study can contribute to understanding patients’ ability to give their consent and improve information regarding the management of health data by increasing confidence in granting the use of their data for research and clinical management.