This paper proposes an active learning accelerated Monte-Carlo simulation method based on the modified K-nearest neighbors algorithm.The core idea of the proposed method is to judge whether or not the output of a rand...This paper proposes an active learning accelerated Monte-Carlo simulation method based on the modified K-nearest neighbors algorithm.The core idea of the proposed method is to judge whether or not the output of a random input point can be postulated through a classifier implemented through the modified K-nearest neighbors algorithm.Compared to other active learning methods resorting to experimental designs,the proposed method is characterized by employing Monte-Carlo simulation for sampling inputs and saving a large portion of the actual evaluations of outputs through an accurate classification,which is applicable for most structural reliability estimation problems.Moreover,the validity,efficiency,and accuracy of the proposed method are demonstrated numerically.In addition,the optimal value of K that maximizes the computational efficiency is studied.Finally,the proposed method is applied to the reliability estimation of the carbon fiber reinforced silicon carbide composite specimens subjected to random displacements,which further validates its practicability.展开更多
Stock trend prediction is a challenging problem because it involves many variables.Aiming at the problem that some existing machine learning techniques, such as random forest(RF), probabilistic random forest(PRF), k-n...Stock trend prediction is a challenging problem because it involves many variables.Aiming at the problem that some existing machine learning techniques, such as random forest(RF), probabilistic random forest(PRF), k-nearest neighbor(KNN), and fuzzy KNN(FKNN), have difficulty in accurately predicting the stock trend(uptrend or downtrend) for a given date, a generalized Heronian mean(GHM) based FKNN predictor named GHM-FKNN was proposed.GHM-FKNN combines GHM aggregation function with the ideas of the classical FKNN approach.After evaluation, the comparison results elucidated that GHM-FKNN outperformed the other best existing methods RF, PRF, KNN and FKNN on independent test datasets corresponding to three stocks, namely AAPL, AMZN and NFLX.Compared with RF, PRF, KNN and FKNN, GHM-FKNN achieved the best performance with accuracy of 62.37% for AAPL, 58.25% for AMZN, and 64.10% for NFLX.展开更多
Winding is one of themost important components in power transformers.Ensuring the health state of the winding is of great importance to the stable operation of the power system.To efficiently and accurately diagnose t...Winding is one of themost important components in power transformers.Ensuring the health state of the winding is of great importance to the stable operation of the power system.To efficiently and accurately diagnose the disc space variation(DSV)fault degree of transformer winding,this paper presents a diagnostic method of winding fault based on the K-Nearest Neighbor(KNN)algorithmand the frequency response analysis(FRA)method.First,a laboratory winding model is used,and DSV faults with four different degrees are achieved by changing disc space of the discs in the winding.Then,a series of FRA tests are conducted to obtain the FRA results and set up the FRA dataset.Second,ten different numerical indices are utilized to obtain features of FRA curves of faulted winding.Third,the 10-fold cross-validation method is employed to determine the optimal k-value of KNN.In addition,to improve the accuracy of the KNN model,a comparative analysis is made between the accuracy of the KNN algorithm and k-value under four distance functions.After getting the most appropriate distance metric and kvalue,the fault classificationmodel based on theKNN and FRA is constructed and it is used to classify the degrees of DSV faults.The identification accuracy rate of the proposed model is up to 98.30%.Finally,the performance of the model is presented by comparing with the support vector machine(SVM),SVM optimized by the particle swarmoptimization(PSO-SVM)method,and randomforest(RF).The results show that the diagnosis accuracy of the proposed model is the highest and the model can be used to accurately diagnose the DSV fault degrees of the winding.展开更多
As climate change negotiations progress,monitoring biomass and carbon stocks is becoming an important part of the current forest research.Therefore,national governments are interested in developing forest-monitoring s...As climate change negotiations progress,monitoring biomass and carbon stocks is becoming an important part of the current forest research.Therefore,national governments are interested in developing forest-monitoring strategies using geospatial technology.Among statistical methods for mapping biomass,there is a nonparametric approach called k-nearest neighbor(kNN).We compared four variations of distance metrics of the kNN for the spatially-explicit estimation of aboveground biomass in a portion of the Mexican north border of the intertropical zone.Satellite derived,climatic,and topographic predictor variables were combined with the Mexican National Forest Inventory(NFI)data to accomplish the purpose.Performance of distance metrics applied into the kNN algorithm was evaluated using a cross validation leave-one-out technique.The results indicate that the Most Similar Neighbor(MSN)approach maximizes the correlation between predictor and response variables(r=0.9).Our results are in agreement with those reported in the literature.These findings confirm the predictive potential of the MSN approach for mapping forest variables at pixel level under the policy of Reducing Emission from Deforestation and Forest Degradation(REDD+).展开更多
During the storehouse surface rolling construction of a core rockfilldam, the spreading thickness of dam face is an important factor that affects the construction quality of the dam storehouse' rolling surface and...During the storehouse surface rolling construction of a core rockfilldam, the spreading thickness of dam face is an important factor that affects the construction quality of the dam storehouse' rolling surface and the overallquality of the entire dam. Currently, the method used to monitor and controlspreading thickness during the dam construction process is artificialsampling check after spreading, which makes it difficult to monitor the entire dam storehouse surface. In this paper, we present an in-depth study based on real-time monitoring and controltheory of storehouse surface rolling construction and obtain the rolling compaction thickness by analyzing the construction track of the rolling machine. Comparatively, the traditionalmethod can only analyze the rolling thickness of the dam storehouse surface after it has been compacted and cannot determine the thickness of the dam storehouse surface in realtime. To solve these problems, our system monitors the construction progress of the leveling machine and employs a real-time spreading thickness monitoring modelbased on the K-nearest neighbor algorithm. Taking the LHK core rockfilldam in Southwest China as an example, we performed real-time monitoring for the spreading thickness and conducted real-time interactive queries regarding the spreading thickness. This approach provides a new method for controlling the spreading thickness of the core rockfilldam storehouse surface.展开更多
Arrhythmia beat classification is an active area of research in ECG based clinical decision support systems. In this paper, Pruned Fuzzy K-nearest neighbor (PFKNN) classifier is proposed to classify six types of beats...Arrhythmia beat classification is an active area of research in ECG based clinical decision support systems. In this paper, Pruned Fuzzy K-nearest neighbor (PFKNN) classifier is proposed to classify six types of beats present in the MIT-BIH Arrhythmia database. We have tested our classifier on ~ 103100 beats for six beat types present in the database. Fuzzy KNN (FKNN) can be implemented very easily but large number of training examples used for classification can be very time consuming and requires large storage space. Hence, we have proposed a time efficient Arif-Fayyaz pruning algorithm especially suitable for FKNN which can maintain good classification accuracy with appropriate retained ratio of training data. By using Arif-Fayyaz pruning algorithm with Fuzzy KNN, we have achieved a beat classification accuracy of 97% and geometric mean of sensitivity of 94.5% with only 19% of the total training examples. The accuracy and sensitivity is comparable to FKNN when all the training data is used. Principal Component Analysis is used to further reduce the dimension of feature space from eleven to six without compromising the accuracy and sensitivity. PFKNN was found to robust against noise present in the ECG data.展开更多
On the basis of machine leaning,suitable algorithms can make advanced time series analysis.This paper proposes a complex k-nearest neighbor(KNN)model for predicting financial time series.This model uses a complex feat...On the basis of machine leaning,suitable algorithms can make advanced time series analysis.This paper proposes a complex k-nearest neighbor(KNN)model for predicting financial time series.This model uses a complex feature extraction process integrating a forward rolling empirical mode decomposition(EMD)for financial time series signal analysis and principal component analysis(PCA)for the dimension reduction.The information-rich features are extracted then input to a weighted KNN classifier where the features are weighted with PCA loading.Finally,prediction is generated via regression on the selected nearest neighbors.The structure of the model as a whole is original.The test results on real historical data sets confirm the effectiveness of the models for predicting the Chinese stock index,an individual stock,and the EUR/USD exchange rate.展开更多
Short-term traffic flow is one of the core technologies to realize traffic flow guidance. In this article, in view of the characteristics that the traffic flow changes repeatedly, a short-term traffic flow forecasting...Short-term traffic flow is one of the core technologies to realize traffic flow guidance. In this article, in view of the characteristics that the traffic flow changes repeatedly, a short-term traffic flow forecasting method based on a three-layer K-nearest neighbor non-parametric regression algorithm is proposed. Specifically, two screening layers based on shape similarity were introduced in K-nearest neighbor non-parametric regression method, and the forecasting results were output using the weighted averaging on the reciprocal values of the shape similarity distances and the most-similar-point distance adjustment method. According to the experimental results, the proposed algorithm has improved the predictive ability of the traditional K-nearest neighbor non-parametric regression method, and greatly enhanced the accuracy and real-time performance of short-term traffic flow forecasting.展开更多
Most of the machineries in small or large-scale industry have rotating elementsupported by bearings for rigid support and accurate movement. For proper functioning ofmachinery, condition monitoring of the bearing is v...Most of the machineries in small or large-scale industry have rotating elementsupported by bearings for rigid support and accurate movement. For proper functioning ofmachinery, condition monitoring of the bearing is very important. In present study soundsignal is used to continuously monitor bearing health as sound signals of rotatingmachineries carry dynamic information of components. There are numerous studies inliterature that are reporting superiority of vibration signal of bearing fault diagnosis.However, there are very few studies done using sound signal. The cost associated withcondition monitoring using sound signal (Microphone) is less than the cost of transducerused to acquire vibration signal (Accelerometer). This paper employs sound signal forcondition monitoring of roller bearing by K-star classifier and k-nearest neighborhoodclassifier. The statistical feature extraction is performed from acquired sound signals. Thentwo-layer feature selection is done using J48 decision tree algorithm and random treealgorithm. These selected features were classified using K-star classifier and k-nearestneighborhood classifier and parametric optimization is performed to achieve the maximumclassification accuracy. The classification results for both K-star classifier and k-nearestneighborhood classifier for condition monitoring of roller bearing using sound signals werecompared.展开更多
In this paper,we develop and apply K-Nearest Neighbor algorithm to propagation pathloss regression.The path loss models present the dependency of attenuation value on distance using machine learning algorithms based o...In this paper,we develop and apply K-Nearest Neighbor algorithm to propagation pathloss regression.The path loss models present the dependency of attenuation value on distance using machine learning algorithms based on the experimental data.The algorithm is performed by choosing k nearest points and training dataset to find the optimal k value.The proposed method is applied to impove and adjust pathloss model at 28 GHz in Keangnam area,Hanoi,Vietnam.The experiments in both line-of-sight and non-line-of-sight scenarios used many combinations of transmit and receive antennas at different transmit antenna heights and random locations of receive antenna have been carried out using Wireless Insite Software.The results have been compared with 3GPP and NYU Wireless Path Loss Models in order to verify the performance of the proposed approach.展开更多
Existing interference protection systems lack automatic evaluation methods to provide scientific, objective and accurate assessment results. To address this issue, this paper develops a layout scheme by geometrically ...Existing interference protection systems lack automatic evaluation methods to provide scientific, objective and accurate assessment results. To address this issue, this paper develops a layout scheme by geometrically modeling the actual scene, so that the hand-held full-band spectrum analyzer would be able to collect signal field strength values for indoor complex scenes. An improved prediction algorithm based on the K-nearest neighbor non-parametric kernel regression was proposed to predict the signal field strengths for the whole plane before and after being shield. Then the highest accuracy set of data could be picked out by comparison. The experimental results show that the improved prediction algorithm based on the K-nearest neighbor non-parametric kernel regression can scientifically and objectively predict the indoor complex scenes’ signal strength and evaluate the interference protection with high accuracy.展开更多
The k-Nearest Neighbor method is one of the most popular techniques for both classification and regression purposes.Because of its operation,the application of this classification may be limited to problems with a cer...The k-Nearest Neighbor method is one of the most popular techniques for both classification and regression purposes.Because of its operation,the application of this classification may be limited to problems with a certain number of instances,particularly,when run time is a consideration.However,the classification of large amounts of data has become a fundamental task in many real-world applications.It is logical to scale the k-Nearest Neighbor method to large scale datasets.This paper proposes a new k-Nearest Neighbor classification method(KNN-CCL)which uses a parallel centroid-based and hierarchical clustering algorithm to separate the sample of training dataset into multiple parts.The introduced clustering algorithm uses four stages of successive refinements and generates high quality clusters.The k-Nearest Neighbor approach subsequently makes use of them to predict the test datasets.Finally,sets of experiments are conducted on the UCI datasets.The experimental results confirm that the proposed k-Nearest Neighbor classification method performs well with regard to classification accuracy and performance.展开更多
The growing usage of Android smartphones has led to a significant rise in incidents of Android malware andprivacy breaches.This escalating security concern necessitates the development of advanced technologies capable...The growing usage of Android smartphones has led to a significant rise in incidents of Android malware andprivacy breaches.This escalating security concern necessitates the development of advanced technologies capableof automatically detecting andmitigatingmalicious activities in Android applications(apps).Such technologies arecrucial for safeguarding user data and maintaining the integrity of mobile devices in an increasingly digital world.Current methods employed to detect sensitive data leaks in Android apps are hampered by two major limitationsthey require substantial computational resources and are prone to a high frequency of false positives.This meansthat while attempting to identify security breaches,these methods often consume considerable processing powerand mistakenly flag benign activities as malicious,leading to inefficiencies and reduced reliability in malwaredetection.The proposed approach includes a data preprocessing step that removes duplicate samples,managesunbalanced datasets,corrects inconsistencies,and imputes missing values to ensure data accuracy.The Minimaxmethod is then used to normalize numerical data,followed by feature vector extraction using the Gain ratio andChi-squared test to identify and extract the most significant characteristics using an appropriate prediction model.This study focuses on extracting a subset of attributes best suited for the task and recommending a predictivemodel based on domain expert opinion.The proposed method is evaluated using Drebin and TUANDROMDdatasets containing 15,036 and 4,464 benign and malicious samples,respectively.The empirical result shows thatthe RandomForest(RF)and Support VectorMachine(SVC)classifiers achieved impressive accuracy rates of 98.9%and 98.8%,respectively,in detecting unknown Androidmalware.A sensitivity analysis experiment was also carriedout on all three ML-based classifiers based on MAE,MSE,R2,and sensitivity parameters,resulting in a flawlessperformance for both datasets.This approach has substantial potential for real-world applications and can serve asa valuable tool for preventing the spread of Androidmalware and enhancing mobile device security.展开更多
In this study,our aim is to address the problem of gene selection by proposing a hybrid bio-inspired evolutionary algorithm that combines Grey Wolf Optimization(GWO)with Harris Hawks Optimization(HHO)for feature selec...In this study,our aim is to address the problem of gene selection by proposing a hybrid bio-inspired evolutionary algorithm that combines Grey Wolf Optimization(GWO)with Harris Hawks Optimization(HHO)for feature selection.Themotivation for utilizingGWOandHHOstems fromtheir bio-inspired nature and their demonstrated success in optimization problems.We aimto leverage the strengths of these algorithms to enhance the effectiveness of feature selection in microarray-based cancer classification.We selected leave-one-out cross-validation(LOOCV)to evaluate the performance of both two widely used classifiers,k-nearest neighbors(KNN)and support vector machine(SVM),on high-dimensional cancer microarray data.The proposed method is extensively tested on six publicly available cancer microarray datasets,and a comprehensive comparison with recently published methods is conducted.Our hybrid algorithm demonstrates its effectiveness in improving classification performance,Surpassing alternative approaches in terms of precision.The outcomes confirm the capability of our method to substantially improve both the precision and efficiency of cancer classification,thereby advancing the development ofmore efficient treatment strategies.The proposed hybridmethod offers a promising solution to the gene selection problem in microarray-based cancer classification.It improves the accuracy and efficiency of cancer diagnosis and treatment,and its superior performance compared to other methods highlights its potential applicability in realworld cancer classification tasks.By harnessing the complementary search mechanisms of GWO and HHO,we leverage their bio-inspired behavior to identify informative genes relevant to cancer diagnosis and treatment.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.12002246 and No.52178301)Knowledge Innovation Program of Wuhan(Grant No.2022010801020357)+2 种基金the Science Research Foundation of Wuhan Institute of Technology(Grant No.K2021030)2020 annual Open Fund of Failure Mechanics&Engineering Disaster Prevention and Mitigation,Key Laboratory of Sichuan Province(Sichuan University)(Grant No.2020JDS0022)Open Research Fund Program of Hubei Provincial Key Laboratory of Chemical Equipment Intensification and Intrinsic Safety(Grant No.2019KA03)。
文摘This paper proposes an active learning accelerated Monte-Carlo simulation method based on the modified K-nearest neighbors algorithm.The core idea of the proposed method is to judge whether or not the output of a random input point can be postulated through a classifier implemented through the modified K-nearest neighbors algorithm.Compared to other active learning methods resorting to experimental designs,the proposed method is characterized by employing Monte-Carlo simulation for sampling inputs and saving a large portion of the actual evaluations of outputs through an accurate classification,which is applicable for most structural reliability estimation problems.Moreover,the validity,efficiency,and accuracy of the proposed method are demonstrated numerically.In addition,the optimal value of K that maximizes the computational efficiency is studied.Finally,the proposed method is applied to the reliability estimation of the carbon fiber reinforced silicon carbide composite specimens subjected to random displacements,which further validates its practicability.
基金Supported by the National Key Research and Development Program (No.2019YFA0707201)the Key Work Program of Institute of Scientific and Technical Information of China (No.ZD2022-01,ZD2023-07)。
文摘Stock trend prediction is a challenging problem because it involves many variables.Aiming at the problem that some existing machine learning techniques, such as random forest(RF), probabilistic random forest(PRF), k-nearest neighbor(KNN), and fuzzy KNN(FKNN), have difficulty in accurately predicting the stock trend(uptrend or downtrend) for a given date, a generalized Heronian mean(GHM) based FKNN predictor named GHM-FKNN was proposed.GHM-FKNN combines GHM aggregation function with the ideas of the classical FKNN approach.After evaluation, the comparison results elucidated that GHM-FKNN outperformed the other best existing methods RF, PRF, KNN and FKNN on independent test datasets corresponding to three stocks, namely AAPL, AMZN and NFLX.Compared with RF, PRF, KNN and FKNN, GHM-FKNN achieved the best performance with accuracy of 62.37% for AAPL, 58.25% for AMZN, and 64.10% for NFLX.
基金supported in part by Shaanxi Natural Science Foundation Project (2023-JC-QN-0438)in part by Fundamental Research Funds for the Central Universities (2452021050).
文摘Winding is one of themost important components in power transformers.Ensuring the health state of the winding is of great importance to the stable operation of the power system.To efficiently and accurately diagnose the disc space variation(DSV)fault degree of transformer winding,this paper presents a diagnostic method of winding fault based on the K-Nearest Neighbor(KNN)algorithmand the frequency response analysis(FRA)method.First,a laboratory winding model is used,and DSV faults with four different degrees are achieved by changing disc space of the discs in the winding.Then,a series of FRA tests are conducted to obtain the FRA results and set up the FRA dataset.Second,ten different numerical indices are utilized to obtain features of FRA curves of faulted winding.Third,the 10-fold cross-validation method is employed to determine the optimal k-value of KNN.In addition,to improve the accuracy of the KNN model,a comparative analysis is made between the accuracy of the KNN algorithm and k-value under four distance functions.After getting the most appropriate distance metric and kvalue,the fault classificationmodel based on theKNN and FRA is constructed and it is used to classify the degrees of DSV faults.The identification accuracy rate of the proposed model is up to 98.30%.Finally,the performance of the model is presented by comparing with the support vector machine(SVM),SVM optimized by the particle swarmoptimization(PSO-SVM)method,and randomforest(RF).The results show that the diagnosis accuracy of the proposed model is the highest and the model can be used to accurately diagnose the DSV fault degrees of the winding.
文摘As climate change negotiations progress,monitoring biomass and carbon stocks is becoming an important part of the current forest research.Therefore,national governments are interested in developing forest-monitoring strategies using geospatial technology.Among statistical methods for mapping biomass,there is a nonparametric approach called k-nearest neighbor(kNN).We compared four variations of distance metrics of the kNN for the spatially-explicit estimation of aboveground biomass in a portion of the Mexican north border of the intertropical zone.Satellite derived,climatic,and topographic predictor variables were combined with the Mexican National Forest Inventory(NFI)data to accomplish the purpose.Performance of distance metrics applied into the kNN algorithm was evaluated using a cross validation leave-one-out technique.The results indicate that the Most Similar Neighbor(MSN)approach maximizes the correlation between predictor and response variables(r=0.9).Our results are in agreement with those reported in the literature.These findings confirm the predictive potential of the MSN approach for mapping forest variables at pixel level under the policy of Reducing Emission from Deforestation and Forest Degradation(REDD+).
基金supported by the Innovative Research Groups of National Natural Science Foundation of China(No. 51621092)National Basic Research Program of China ("973" Program, No. 2013CB035904)National Natural Science Foundation of China (No. 51439005)
文摘During the storehouse surface rolling construction of a core rockfilldam, the spreading thickness of dam face is an important factor that affects the construction quality of the dam storehouse' rolling surface and the overallquality of the entire dam. Currently, the method used to monitor and controlspreading thickness during the dam construction process is artificialsampling check after spreading, which makes it difficult to monitor the entire dam storehouse surface. In this paper, we present an in-depth study based on real-time monitoring and controltheory of storehouse surface rolling construction and obtain the rolling compaction thickness by analyzing the construction track of the rolling machine. Comparatively, the traditionalmethod can only analyze the rolling thickness of the dam storehouse surface after it has been compacted and cannot determine the thickness of the dam storehouse surface in realtime. To solve these problems, our system monitors the construction progress of the leveling machine and employs a real-time spreading thickness monitoring modelbased on the K-nearest neighbor algorithm. Taking the LHK core rockfilldam in Southwest China as an example, we performed real-time monitoring for the spreading thickness and conducted real-time interactive queries regarding the spreading thickness. This approach provides a new method for controlling the spreading thickness of the core rockfilldam storehouse surface.
文摘Arrhythmia beat classification is an active area of research in ECG based clinical decision support systems. In this paper, Pruned Fuzzy K-nearest neighbor (PFKNN) classifier is proposed to classify six types of beats present in the MIT-BIH Arrhythmia database. We have tested our classifier on ~ 103100 beats for six beat types present in the database. Fuzzy KNN (FKNN) can be implemented very easily but large number of training examples used for classification can be very time consuming and requires large storage space. Hence, we have proposed a time efficient Arif-Fayyaz pruning algorithm especially suitable for FKNN which can maintain good classification accuracy with appropriate retained ratio of training data. By using Arif-Fayyaz pruning algorithm with Fuzzy KNN, we have achieved a beat classification accuracy of 97% and geometric mean of sensitivity of 94.5% with only 19% of the total training examples. The accuracy and sensitivity is comparable to FKNN when all the training data is used. Principal Component Analysis is used to further reduce the dimension of feature space from eleven to six without compromising the accuracy and sensitivity. PFKNN was found to robust against noise present in the ECG data.
基金supported by the Social Science Foundation of China under Grant No.17BGL231。
文摘On the basis of machine leaning,suitable algorithms can make advanced time series analysis.This paper proposes a complex k-nearest neighbor(KNN)model for predicting financial time series.This model uses a complex feature extraction process integrating a forward rolling empirical mode decomposition(EMD)for financial time series signal analysis and principal component analysis(PCA)for the dimension reduction.The information-rich features are extracted then input to a weighted KNN classifier where the features are weighted with PCA loading.Finally,prediction is generated via regression on the selected nearest neighbors.The structure of the model as a whole is original.The test results on real historical data sets confirm the effectiveness of the models for predicting the Chinese stock index,an individual stock,and the EUR/USD exchange rate.
文摘Short-term traffic flow is one of the core technologies to realize traffic flow guidance. In this article, in view of the characteristics that the traffic flow changes repeatedly, a short-term traffic flow forecasting method based on a three-layer K-nearest neighbor non-parametric regression algorithm is proposed. Specifically, two screening layers based on shape similarity were introduced in K-nearest neighbor non-parametric regression method, and the forecasting results were output using the weighted averaging on the reciprocal values of the shape similarity distances and the most-similar-point distance adjustment method. According to the experimental results, the proposed algorithm has improved the predictive ability of the traditional K-nearest neighbor non-parametric regression method, and greatly enhanced the accuracy and real-time performance of short-term traffic flow forecasting.
文摘Most of the machineries in small or large-scale industry have rotating elementsupported by bearings for rigid support and accurate movement. For proper functioning ofmachinery, condition monitoring of the bearing is very important. In present study soundsignal is used to continuously monitor bearing health as sound signals of rotatingmachineries carry dynamic information of components. There are numerous studies inliterature that are reporting superiority of vibration signal of bearing fault diagnosis.However, there are very few studies done using sound signal. The cost associated withcondition monitoring using sound signal (Microphone) is less than the cost of transducerused to acquire vibration signal (Accelerometer). This paper employs sound signal forcondition monitoring of roller bearing by K-star classifier and k-nearest neighborhoodclassifier. The statistical feature extraction is performed from acquired sound signals. Thentwo-layer feature selection is done using J48 decision tree algorithm and random treealgorithm. These selected features were classified using K-star classifier and k-nearestneighborhood classifier and parametric optimization is performed to achieve the maximumclassification accuracy. The classification results for both K-star classifier and k-nearestneighborhood classifier for condition monitoring of roller bearing using sound signals werecompared.
基金This work is carried out in the framework of the project supported by the Department of Science and Technology of Kien Giang,Vietnam.The authors would like to thank them for supporting this research。
文摘In this paper,we develop and apply K-Nearest Neighbor algorithm to propagation pathloss regression.The path loss models present the dependency of attenuation value on distance using machine learning algorithms based on the experimental data.The algorithm is performed by choosing k nearest points and training dataset to find the optimal k value.The proposed method is applied to impove and adjust pathloss model at 28 GHz in Keangnam area,Hanoi,Vietnam.The experiments in both line-of-sight and non-line-of-sight scenarios used many combinations of transmit and receive antennas at different transmit antenna heights and random locations of receive antenna have been carried out using Wireless Insite Software.The results have been compared with 3GPP and NYU Wireless Path Loss Models in order to verify the performance of the proposed approach.
基金the National Natural Science Foundation of China under projects 61772150 and 61862012the Guangxi Key R&D Program under project AB17195025+5 种基金the Guangxi Natural Science Foundation under grants 2018GXNSFDA281054 and 2018GXNSFAA281232the National Cryptography Development Fund of China under project MMJJ20170217the Guangxi Science and Technology Base and Special Talents Program AD18281044the Innovation Project of GUET Graduate Education under project 2017YJCX46the Guangxi Young Teachers’ Basic Ability Improvement Program under Grant 2018KY0194the open program of Guangxi Key Laboratory of Cryptography and Information Security under projects GCIS201621 and GCIS201702.
文摘Existing interference protection systems lack automatic evaluation methods to provide scientific, objective and accurate assessment results. To address this issue, this paper develops a layout scheme by geometrically modeling the actual scene, so that the hand-held full-band spectrum analyzer would be able to collect signal field strength values for indoor complex scenes. An improved prediction algorithm based on the K-nearest neighbor non-parametric kernel regression was proposed to predict the signal field strengths for the whole plane before and after being shield. Then the highest accuracy set of data could be picked out by comparison. The experimental results show that the improved prediction algorithm based on the K-nearest neighbor non-parametric kernel regression can scientifically and objectively predict the indoor complex scenes’ signal strength and evaluate the interference protection with high accuracy.
基金The authors received no specific funding for this work.
文摘The k-Nearest Neighbor method is one of the most popular techniques for both classification and regression purposes.Because of its operation,the application of this classification may be limited to problems with a certain number of instances,particularly,when run time is a consideration.However,the classification of large amounts of data has become a fundamental task in many real-world applications.It is logical to scale the k-Nearest Neighbor method to large scale datasets.This paper proposes a new k-Nearest Neighbor classification method(KNN-CCL)which uses a parallel centroid-based and hierarchical clustering algorithm to separate the sample of training dataset into multiple parts.The introduced clustering algorithm uses four stages of successive refinements and generates high quality clusters.The k-Nearest Neighbor approach subsequently makes use of them to predict the test datasets.Finally,sets of experiments are conducted on the UCI datasets.The experimental results confirm that the proposed k-Nearest Neighbor classification method performs well with regard to classification accuracy and performance.
文摘为了改善利用SCATS交通数据估计路段行程时间的效果,通过分析SCATS实际交通数据获取时间间隔不一致的特征,构建了SCATS交通数据虚拟时间序列,将利用因子分析法提取的累计贡献率在85%以上的主因子作为交通模式特征向量的构成要素,用欧氏距离作为当前交通模式特征向量和历史交通模式特征向量相似性的测度指标,以路段行程时间估计误差最小为目标选取当前交通模式的近邻数,对交通模式之间距离的倒数进行归一化处理,确定了相似交通模式的行程时间权重,设计了基于SCATS交通数据的路段行程时间估计方法.实例结果表明:与多元线性回归方法相比,本文方法估计的路段行程时间平均绝对误差、平均绝对百分比误差和均方根误差分别平均减少了9.68 s、8.07%和4.5 s.
基金Princess Nourah bint Abdulrahman University and Researchers Supporting Project Number(PNURSP2024R346)Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.
文摘The growing usage of Android smartphones has led to a significant rise in incidents of Android malware andprivacy breaches.This escalating security concern necessitates the development of advanced technologies capableof automatically detecting andmitigatingmalicious activities in Android applications(apps).Such technologies arecrucial for safeguarding user data and maintaining the integrity of mobile devices in an increasingly digital world.Current methods employed to detect sensitive data leaks in Android apps are hampered by two major limitationsthey require substantial computational resources and are prone to a high frequency of false positives.This meansthat while attempting to identify security breaches,these methods often consume considerable processing powerand mistakenly flag benign activities as malicious,leading to inefficiencies and reduced reliability in malwaredetection.The proposed approach includes a data preprocessing step that removes duplicate samples,managesunbalanced datasets,corrects inconsistencies,and imputes missing values to ensure data accuracy.The Minimaxmethod is then used to normalize numerical data,followed by feature vector extraction using the Gain ratio andChi-squared test to identify and extract the most significant characteristics using an appropriate prediction model.This study focuses on extracting a subset of attributes best suited for the task and recommending a predictivemodel based on domain expert opinion.The proposed method is evaluated using Drebin and TUANDROMDdatasets containing 15,036 and 4,464 benign and malicious samples,respectively.The empirical result shows thatthe RandomForest(RF)and Support VectorMachine(SVC)classifiers achieved impressive accuracy rates of 98.9%and 98.8%,respectively,in detecting unknown Androidmalware.A sensitivity analysis experiment was also carriedout on all three ML-based classifiers based on MAE,MSE,R2,and sensitivity parameters,resulting in a flawlessperformance for both datasets.This approach has substantial potential for real-world applications and can serve asa valuable tool for preventing the spread of Androidmalware and enhancing mobile device security.
基金the Deputyship for Research and Innovation,“Ministry of Education”in Saudi Arabia for funding this research(IFKSUOR3-014-3).
文摘In this study,our aim is to address the problem of gene selection by proposing a hybrid bio-inspired evolutionary algorithm that combines Grey Wolf Optimization(GWO)with Harris Hawks Optimization(HHO)for feature selection.Themotivation for utilizingGWOandHHOstems fromtheir bio-inspired nature and their demonstrated success in optimization problems.We aimto leverage the strengths of these algorithms to enhance the effectiveness of feature selection in microarray-based cancer classification.We selected leave-one-out cross-validation(LOOCV)to evaluate the performance of both two widely used classifiers,k-nearest neighbors(KNN)and support vector machine(SVM),on high-dimensional cancer microarray data.The proposed method is extensively tested on six publicly available cancer microarray datasets,and a comprehensive comparison with recently published methods is conducted.Our hybrid algorithm demonstrates its effectiveness in improving classification performance,Surpassing alternative approaches in terms of precision.The outcomes confirm the capability of our method to substantially improve both the precision and efficiency of cancer classification,thereby advancing the development ofmore efficient treatment strategies.The proposed hybridmethod offers a promising solution to the gene selection problem in microarray-based cancer classification.It improves the accuracy and efficiency of cancer diagnosis and treatment,and its superior performance compared to other methods highlights its potential applicability in realworld cancer classification tasks.By harnessing the complementary search mechanisms of GWO and HHO,we leverage their bio-inspired behavior to identify informative genes relevant to cancer diagnosis and treatment.