期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于深度度量学习的导弹气动系数预测
1
作者
刘林
杨春明
+1 位作者
蔺佳哲
向宏辉
《南京航空航天大学学报》
CAS
CSCD
北大核心
2024年第5期950-959,共10页
传统多输出深度神经网络在导弹气动性能系数预测任务中,通常采用均方误差(Mean square error,MSE)和平均绝对误差(Mean absolute error,MAE)来训练网络,但在小样本及无物理方程约束的情况下,MSE与MAE对导弹性能系数之间的约束和不同导...
传统多输出深度神经网络在导弹气动性能系数预测任务中,通常采用均方误差(Mean square error,MSE)和平均绝对误差(Mean absolute error,MAE)来训练网络,但在小样本及无物理方程约束的情况下,MSE与MAE对导弹性能系数之间的约束和不同导弹样本之间的区分就会降低。针对该问题,提出一种基于深度度量学习的K最近邻大边距损失函数(K-nearest neighbor large margin,KNNLM),它通过边距约束将大差异输出样本推开,拉近相近输出样本,以此来解决样本及样本间的约束区分问题。以导弹气动外形及工况参数作为输入,4种气动系数作为输出,在反向传播神经网络(Backpropagation neural network,BPNN)和多任务学习神经网络(Multi-task learning neural network,MTLNN)中分别采用MSE、MAE、KNNLM进行实验对比,实验结果表明:KNNLM在BPNN和MTLNN中的精度相比于MSE和MAE最大能够提升14.44%和16.35%,最少提升3.72%。KNNLM能够在少样本及无物理知识约束的情况下,能更好地对导弹样本进行约束区分,使深度神经网络模型的预测精度更高,且鲁棒性更强。
展开更多
关键词
深度度量学习
导弹
气动性能预测
K最近邻大边距
多输出
下载PDF
职称材料
题名
基于深度度量学习的导弹气动系数预测
1
作者
刘林
杨春明
蔺佳哲
向宏辉
机构
西南科技大学计算机科学与技术学院
中国空气动力研究与发展中心计算空气动力研究所
中国航发四川燃气涡轮研究院
出处
《南京航空航天大学学报》
CAS
CSCD
北大核心
2024年第5期950-959,共10页
基金
四川省科技厅重点研发项目(2021YFG0031)
先进航空动力创新工作站项目(HKCX2022-01-022)。
文摘
传统多输出深度神经网络在导弹气动性能系数预测任务中,通常采用均方误差(Mean square error,MSE)和平均绝对误差(Mean absolute error,MAE)来训练网络,但在小样本及无物理方程约束的情况下,MSE与MAE对导弹性能系数之间的约束和不同导弹样本之间的区分就会降低。针对该问题,提出一种基于深度度量学习的K最近邻大边距损失函数(K-nearest neighbor large margin,KNNLM),它通过边距约束将大差异输出样本推开,拉近相近输出样本,以此来解决样本及样本间的约束区分问题。以导弹气动外形及工况参数作为输入,4种气动系数作为输出,在反向传播神经网络(Backpropagation neural network,BPNN)和多任务学习神经网络(Multi-task learning neural network,MTLNN)中分别采用MSE、MAE、KNNLM进行实验对比,实验结果表明:KNNLM在BPNN和MTLNN中的精度相比于MSE和MAE最大能够提升14.44%和16.35%,最少提升3.72%。KNNLM能够在少样本及无物理知识约束的情况下,能更好地对导弹样本进行约束区分,使深度神经网络模型的预测精度更高,且鲁棒性更强。
关键词
深度度量学习
导弹
气动性能预测
K最近邻大边距
多输出
Keywords
deep metric learning
missile
aerodynamic performance prediction
k-nearest
neighbor
large
margin
(
knnlm
)
multi-output
分类号
V211.24 [航空宇航科学与技术—航空宇航推进理论与工程]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于深度度量学习的导弹气动系数预测
刘林
杨春明
蔺佳哲
向宏辉
《南京航空航天大学学报》
CAS
CSCD
北大核心
2024
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部