期刊文献+
共找到2,237篇文章
< 1 2 112 >
每页显示 20 50 100
Basic Tenets of Classification Algorithms K-Nearest-Neighbor, Support Vector Machine, Random Forest and Neural Network: A Review 被引量:4
1
作者 Ernest Yeboah Boateng Joseph Otoo Daniel A. Abaye 《Journal of Data Analysis and Information Processing》 2020年第4期341-357,共17页
In this paper, sixty-eight research articles published between 2000 and 2017 as well as textbooks which employed four classification algorithms: K-Nearest-Neighbor (KNN), Support Vector Machines (SVM), Random Forest (... In this paper, sixty-eight research articles published between 2000 and 2017 as well as textbooks which employed four classification algorithms: K-Nearest-Neighbor (KNN), Support Vector Machines (SVM), Random Forest (RF) and Neural Network (NN) as the main statistical tools were reviewed. The aim was to examine and compare these nonparametric classification methods on the following attributes: robustness to training data, sensitivity to changes, data fitting, stability, ability to handle large data sizes, sensitivity to noise, time invested in parameter tuning, and accuracy. The performances, strengths and shortcomings of each of the algorithms were examined, and finally, a conclusion was arrived at on which one has higher performance. It was evident from the literature reviewed that RF is too sensitive to small changes in the training dataset and is occasionally unstable and tends to overfit in the model. KNN is easy to implement and understand but has a major drawback of becoming significantly slow as the size of the data in use grows, while the ideal value of K for the KNN classifier is difficult to set. SVM and RF are insensitive to noise or overtraining, which shows their ability in dealing with unbalanced data. Larger input datasets will lengthen classification times for NN and KNN more than for SVM and RF. Among these nonparametric classification methods, NN has the potential to become a more widely used classification algorithm, but because of their time-consuming parameter tuning procedure, high level of complexity in computational processing, the numerous types of NN architectures to choose from and the high number of algorithms used for training, most researchers recommend SVM and RF as easier and wieldy used methods which repeatedly achieve results with high accuracies and are often faster to implement. 展开更多
关键词 Classification Algorithms NON-PARAMETRIC k-nearest-neighbor Neural Networks Random Forest Support Vector Machines
下载PDF
基于沙地猫群优化–最小二乘支持向量机的动态NOx排放预测 被引量:4
2
作者 金秀章 史德金 乔鹏 《中国电机工程学报》 EI CSCD 北大核心 2024年第1期182-190,I0015,共10页
针对火电机组频繁调峰导致机组燃烧状态不稳,进而导致锅炉出口NOx浓度波动范围大的问题,提出一种基于沙地猫群优化(sand cat sarm optimization,SCSO)的最小二乘支持向量机(leastsquaressupportvectormachine,LSSVM) NOx动态预测模型。... 针对火电机组频繁调峰导致机组燃烧状态不稳,进而导致锅炉出口NOx浓度波动范围大的问题,提出一种基于沙地猫群优化(sand cat sarm optimization,SCSO)的最小二乘支持向量机(leastsquaressupportvectormachine,LSSVM) NOx动态预测模型。首先利用k近邻互信息计算时间延迟的同时筛选辅助变量。然后,基于SCSO算法进行输入变量阶次的选择。使用包含辅助变量时间延迟和阶次的信息作为模型的输入,SCSO算法优化最小二乘支持向量机参数,建立动态NOx排放最小二乘支持向量机预测模型(SCSO-LSSVM动态软测量模型)。最后将模型与未加入迟延的LSSVM模型,加入迟延的LSSVM模型和粒子群优化算法(particle swarm optimization,PSO)优化最小二乘支持向量机参数的动态软测量模型进行对比验证。结果表明,相较于其他模型,该文建立SCSO-LSSVM动态软测量模型均方根误差、平均绝对误差、平均绝对误差最小,预测精度最高,而且在NOx浓度剧烈波动时也能够较好地预测NOx浓度,具有很好的动态特性。 展开更多
关键词 NOx浓度 k近邻互信息 沙地猫群优化算法 最小二乘支持向量机 软测量模型
下载PDF
应用于供应链的区块链PBFT共识算法优化 被引量:1
3
作者 黄宇翔 《计算机系统应用》 2024年第4期209-214,共6页
目前,区块链在供应链领域中的应用越来越受到业界的广泛关注.但由于供应链中存在大量复杂性的事务,这给可信的主节点选取工作带来了挑战.因此,在机器学习分类算法与PBFT(practical Byzantine fault tolerance)共识算法的基础上,提出一... 目前,区块链在供应链领域中的应用越来越受到业界的广泛关注.但由于供应链中存在大量复杂性的事务,这给可信的主节点选取工作带来了挑战.因此,在机器学习分类算法与PBFT(practical Byzantine fault tolerance)共识算法的基础上,提出一种应用于供应链的区块链PBFT共识算法优化方法.对构建供应链与区块链的集成框架进行分析,根据供应链中参与共识的节点属性特征,运用K-近邻(K-nearest neighbors)来优化PBFT共识算法的主节点选取规则.实验结果表明,对共识节点进行信任评估分类可以较好地解决因视图切换所引发的效率问题,从而提升区块链的吞吐量、时延、容错性等共识性能,具有一定的实用性,也给区块链在其他行业的应用提供了思路. 展开更多
关键词 区块链 实用拜占庭容错 供应链 K-近邻 信任评估
下载PDF
ML组合的CYGNSS海面风速反演质量控制模型
4
作者 张云 赵星宇 +3 位作者 杨树瑚 孙聪 韩彦岭 尹继伟 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2024年第1期20-29,共10页
卷积神经网络(CNN)可用于气旋全球导航卫星系统(CYGNSS)的海面风速反演。虽然在模型训练前设置了质量控制指标来检测和削弱CYGNSS的异常观测数据,但CYGNSS观测数据中仍存在异常值导致模型反演精度降低,甚至出现错误反演结果。因此,提出... 卷积神经网络(CNN)可用于气旋全球导航卫星系统(CYGNSS)的海面风速反演。虽然在模型训练前设置了质量控制指标来检测和削弱CYGNSS的异常观测数据,但CYGNSS观测数据中仍存在异常值导致模型反演精度降低,甚至出现错误反演结果。因此,提出一种基于机器学习(ML)组合的海面风速反演模型。在基于CNN回归模型的CYGNSS反演海面风速基础上,ML分类模型生成CNN回归结果的质量标志位,该标志位可以检测并删除CNN回归结果的异常值,进一步提高风速反演结果的数据质量,ML分类模型能够更好地考虑各种数据误差之间的相互作用,而不是单独使用每个条件的阈值,以达到更优的海面风速反演精度的效果。实验对比了Logistic回归(LR)、决策树(DT)、朴素贝叶斯模型、K最邻近(KNN)算法、神经网络(NN)模型、支持向量机(SVM)算法等6个分类模型,其中,基于KNN算法的分类模型对风速反演质量控制的效果最优。所提风速反演组合模型显著提高了反演结果的精度,在0~20 m/s区间内,异常样本过滤率为81.27%,在所有被过滤的数据中,过滤正确率为86.03%;风速反演误差的均方根误差从无ML分类模型的1.7 m/s降低到有ML分类模型的1.44 m/s,其中,训练样本为0~10 m/s的反演结果精度提升效果较为明显,证明了所提风速反演组合模型对风速质量控制的有效性。 展开更多
关键词 气旋全球导航卫星系统 风速反演 质量控制 机器学习组合模型 卷积神经网络 K最邻近算法
下载PDF
自适应初始光子收集半径的卡方渐进光子映射
5
作者 贺怀清 元林 +1 位作者 刘浩翰 惠康华 《计算机工程与设计》 北大核心 2024年第8期2433-2441,共9页
卡方渐进光子映射(chi-squared progressive photon mapping, CPPM)使用K近邻法(K nearest neighbor, KNN)为命中点确定初始半径,导致图像中光照均匀区域的噪点及明暗交界区域和焦散区域的模糊。针对此问题,提出一种计算光子映射初始半... 卡方渐进光子映射(chi-squared progressive photon mapping, CPPM)使用K近邻法(K nearest neighbor, KNN)为命中点确定初始半径,导致图像中光照均匀区域的噪点及明暗交界区域和焦散区域的模糊。针对此问题,提出一种计算光子映射初始半径的算法,自适应地为各命中点确定初始半径:为CPPM算法增加预处理环节,根据对光子分布的均匀程度的检验及对高频区域的筛选为命中点设置初始半径,以保证光照均匀区域的命中点保持在大半径上,光照变化区域的命中点半径快速下降。实验结果表明,改进算法减少了光子映射算法的方差和偏差,提高了渲染效果。 展开更多
关键词 渐进光子映射 K近邻法 卡方检验 自适应 初始半径 焦散 光子分布
下载PDF
结合精英初始化和K近邻的蛇优化算法
6
作者 王丽娟 刘姝含 +1 位作者 王剑 田亚旗 《计算机应用研究》 CSCD 北大核心 2024年第9期2712-2721,共10页
蛇优化算法(SO)是一种受自然界中蛇生存行为启发产生的元启发式优化算法。原始蛇优化算法存在收敛速度慢、易陷入局部最优的问题,因此提出了一种结合精英初始化和K近邻的改进蛇优化算法(elite initia-lization and K-nearest neighbors ... 蛇优化算法(SO)是一种受自然界中蛇生存行为启发产生的元启发式优化算法。原始蛇优化算法存在收敛速度慢、易陷入局部最优的问题,因此提出了一种结合精英初始化和K近邻的改进蛇优化算法(elite initia-lization and K-nearest neighbors improved snake optimizer,EKISO)。首先,为了提高初始种群质量,在种群初始化阶段提出精英初始化的方法,根据种群精英个体产生优质初始种群个体;其次,通过振荡因子优化螺旋觅食策略扩大全局勘探阶段的搜索范围、提高算法的局部逃逸能力;最后,在局部开发阶段提出K近邻思想的位置更新方法,增强种群个体之间的信息交互能力,从而加快收敛速度、提高收敛精度。利用14个经典测试函数和4个CEC2017测试函数将该方法与其他7种优化算法进行对比,证明EKISO收敛速度更快、精度更高且不易陷入局部最优。为了进一步验证EKISO的实用性与可行性,将EKISO应用于压力容器设计问题中,通过实验对比分析可知,EKISO在处理实际优化问题上具有一定的优越性。 展开更多
关键词 蛇优化算法 精英初始化 K近邻 振荡因子 工程优化
下载PDF
基于融合K-近邻算法的电压互感器在线监测方法
7
作者 李振华 崔九喜 +3 位作者 杨信强 吴海荣 杨诗豪 薛田良 《电网技术》 EI CSCD 北大核心 2024年第9期3938-3947,I0100,共11页
由于受工作时长和环境因素的影响,电容式电压互感器(capacitor voltage transformer,CVT)在运行过程中误差稳定性不高,易出现电能计量失准现象。为此,该文提出了一种基于融合K-近邻算法(fusion K-nearest neighbor algorithm,FKNN)的电... 由于受工作时长和环境因素的影响,电容式电压互感器(capacitor voltage transformer,CVT)在运行过程中误差稳定性不高,易出现电能计量失准现象。为此,该文提出了一种基于融合K-近邻算法(fusion K-nearest neighbor algorithm,FKNN)的电压互感器在线评估方法。该方法利用互感器的历史运行数据构建虚拟标准器,通过改进K-近邻算法对互感器实时状态进行监测,实现对异常情况的报警。同时,提出了一种加权移动时间窗的方法,自适应更新异常阈值,有效削弱电网不平衡波动的影响。实验结果表明,该文方法能够准确监测互感器的0.2级误差漂移。 展开更多
关键词 电压互感器 虚拟标准器 K-近邻算法 自适应更新
下载PDF
缺失数据过程的自适应多元EWMA控制图
8
作者 濮晓龙 项冬冬 陈昕妍 《应用概率统计》 CSCD 北大核心 2024年第2期343-363,共21页
随着生产过程的日益复杂,多元统计过程控制(SPC)领域对在线算法的关注与日俱增.然而,基于完整数据和均匀时间间隔假设的传统方法在存在缺失数据时表现并不理想.为了最大化利用可用信息,我们提出了一种自适应指数加权移动平均(EWMA)控制... 随着生产过程的日益复杂,多元统计过程控制(SPC)领域对在线算法的关注与日俱增.然而,基于完整数据和均匀时间间隔假设的传统方法在存在缺失数据时表现并不理想.为了最大化利用可用信息,我们提出了一种自适应指数加权移动平均(EWMA)控制图,它采用了加权插补方法,能够充分利用完整数据和不完整数据之间的关系.具体而言,我们首先引入了两种恢复方法:改进的K近邻方法和传统的单变量EWMA方法.然后,我们构造了一个自适应加权函数来结合这两种方法,即当样本信息表明过程超出控制的可能性增加时,会降低EWMA统计量的权重,反之亦然.通过模拟结果和一个实际案例,我们证明了所提出方案的稳健性和敏感性. 展开更多
关键词 在线监控 完全随机缺失 加权插补 指数加权移动平均 改进的K近邻
下载PDF
基于组合加权k近邻分类的无线传感网络节点复制攻击检测方法
9
作者 赵晓峰 王平水 《传感技术学报》 CAS CSCD 北大核心 2024年第6期1056-1060,共5页
无线传感网络节点体积小,隐蔽性强,节点复制攻击检测的难度较大,为此提出一种基于组合加权k近邻分类的无线传感网络节点复制攻击检测方法。通过信标节点的空间位置数据与相距跳数得出各节点之间的相似程度,结合高斯径向基核函数求解未... 无线传感网络节点体积小,隐蔽性强,节点复制攻击检测的难度较大,为此提出一种基于组合加权k近邻分类的无线传感网络节点复制攻击检测方法。通过信标节点的空间位置数据与相距跳数得出各节点之间的相似程度,结合高斯径向基核函数求解未知节点的横轴、纵轴的空间坐标,确定各网络节点的空间位置;根据网络节点的属性特征与投票机制建立节点复制攻击模型,凭借组合加权k近邻分类法划分节点类型,并将结果传送至簇头节点,由簇头节点做出最后的仲裁,识别出节点复制攻击行为。仿真结果表明,所提方法的节点复制攻击检测率最大值为99.5%,最小值为97.9%,对节点复制攻击检测的耗时为5.41 s,通信开销数据包数量最大值为209个,最小值为81个。 展开更多
关键词 无线传感网络 攻击检测 组合加权k近邻分类 复制节点 部署区域 信标节点
下载PDF
基于数字孪生与k-近邻算法的车间设备运行状态预测研究
10
作者 和征 李忠鹏 杨小红 《制造技术与机床》 北大核心 2024年第3期193-199,共7页
由于传统车间设备运行状态预测不能有效利用历史数据进行学习,实时响应能力有限,难以在复杂调度环境中取得良好效果,因此文章提出一种数字孪生与k-近邻算法相结合的车间设备运行状态预测模型。构建车间设备实体在信息空间的数字孪生模型... 由于传统车间设备运行状态预测不能有效利用历史数据进行学习,实时响应能力有限,难以在复杂调度环境中取得良好效果,因此文章提出一种数字孪生与k-近邻算法相结合的车间设备运行状态预测模型。构建车间设备实体在信息空间的数字孪生模型,并建立设备实体与模型之间的映射关系,从而获取实时特征数据,即设备的运行状态特征数据。运用k-近邻算法计算实时特征数据与历史数据之间的欧几里得距离,即计算设备当前运行状态与历史已知状态的相似度,最终通过前k个距离所对应的设备历史运行状态数据,预测设备的当前运行状态。该模型的本质是通过数字孪生的实时数据采集,获取指定设备运行状态特征数据,运用k-近邻算法预测设备的实时运行状态。相较以往研究,本研究贡献在于提高设备实时运行状态预测的准确率。如果将数字孪生、k-近邻算法与具备自我学习能力的相关算法相结合,模型的预测效果会更好。 展开更多
关键词 K-近邻算法 机器学习 数字孪生 车间设备运行状态预测
下载PDF
改进DPC聚类算法的离群点检测与解释方法
11
作者 周玉 夏浩 裴泽宣 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2024年第8期68-85,共18页
为解决全局离群点检测方法无法对局部离群点进行检测,以及局部异常因子在面对大量局部离群点时性能下降的问题,利用k近邻(KNN)和核密度估计方法(KDE)提出一种基于改进快速搜索和发现密度峰值聚类算法(KDPC)的离群点检测与解释方法,该方... 为解决全局离群点检测方法无法对局部离群点进行检测,以及局部异常因子在面对大量局部离群点时性能下降的问题,利用k近邻(KNN)和核密度估计方法(KDE)提出一种基于改进快速搜索和发现密度峰值聚类算法(KDPC)的离群点检测与解释方法,该方法能够同时对数据点的全局和局部进行分析。首先,利用k近邻和核密度估计方法计算数据点的局部密度,代替传统DPC算法中根据截断距离计算的局部密度。其次,将数据点的k近邻距离之和作为全局异常值,并通过KDPC聚类算法计算簇密度以及数据点的局部异常值。最后,将数据点的全局与局部异常值进行乘积作为最终异常得分,选取异常得分最高的Top-n作为离群点,通过构建全局-局部异常值决策图对全局和局部离群点进行解释。利用人工数据集和UCI数据集进行实验并与10种常用离群点检测方法进行比较。结果表明,该方法对全局和局部离群点都有着较高的检测精度和检测性能,并且AUC方面受k值影响较小。同时,利用该方法对NBA球员数据进行分析讨论,进一步证明了该方法的实用性和有效性。 展开更多
关键词 离群点检测 聚类 密度峰值 K近邻 核密度估计
下载PDF
一种Tor网站多网页多标签指纹识别方法
12
作者 蔡满春 席荣康 +1 位作者 朱懿 赵忠斌 《信息网络安全》 CSCD 北大核心 2024年第7期1088-1097,共10页
Tor匿名通信系统经常被不法分子用来从事暗网犯罪活动,Tor网页指纹识别技术为暗网监管提供技术手段。针对单标签Tor网页指纹识别技术在网络监管中实用性差的问题,文章提出一种多网页多标签Tor指纹识别方法。首先,对标准粒子群算法、K最... Tor匿名通信系统经常被不法分子用来从事暗网犯罪活动,Tor网页指纹识别技术为暗网监管提供技术手段。针对单标签Tor网页指纹识别技术在网络监管中实用性差的问题,文章提出一种多网页多标签Tor指纹识别方法。首先,对标准粒子群算法、K最近邻算法进行参数优化并整合,提出自适应粒子群优化K最近邻模型APSO-KNN,进行连续多标签网页分割。然后,利用自注意力机制和一维卷积神经网络模型对网页分割片段进行内容识别。最后,利用APSO-KNN记忆打分机制选择识别失败的网页的次优分割点进行网页重分割。实验结果表明,APSO-KNN采用粒子搜索机制代替穷举遍历机制寻找分割点能取得96.30%的分割准确率,分割效率较传统KNN算法有显著提高。深度学习模型SA-1DCNN抗网页分割误差性能远优于机器学习模型,识别准确率可达96.1%。 展开更多
关键词 洋葱路由 网页指纹 粒子群优化算法 加权K最近邻算法
下载PDF
基于概率密度的自适应k近邻缺失值填充方法
13
作者 梁路 林俊跃 霍颖翔 《华南师范大学学报(自然科学版)》 CAS 北大核心 2024年第4期80-90,共11页
基于k近邻的缺失值填充方法通常使用样本间的距离来度量样本的相似性,在计算距离时,没有区分样本各属性的权重,即所有属性对距离的贡献是一样的。然而,在非均匀分布的不平衡数据集中,样本的异质性往往体现在取值不常见的属性上,即样本... 基于k近邻的缺失值填充方法通常使用样本间的距离来度量样本的相似性,在计算距离时,没有区分样本各属性的权重,即所有属性对距离的贡献是一样的。然而,在非均匀分布的不平衡数据集中,样本的异质性往往体现在取值不常见的属性上,即样本之间的相似性受属性取值概率影响,此时用传统的距离公式来度量相似性是不够准确的。因此,文章针对非均匀分布的不平衡数据集提出了一种自适应k近邻缺失值填充方法(AkNNI):首先,引入属性的概率密度,动态调整各个属性的重要性,凸显稀疏值与缩小频繁值在距离计算上的贡献,从而更好地表达样本的异质性以及捕捉样本之间的相似性;然后,针对高缺失率下数据集中完备样本稀少的情况,综合考虑了样本的相似性和完整性,设计了新的k近邻的选择流程。实验选取了6个非均匀分布数据集,对比了AkNNI方法与其他5种经典填充方法的填充效果,验证了填充后的数据集在k近邻分类器的分类效果,深入探索了3种评估指标的相互关系。实验结果表明AkNNI方法具有更高的填充准确度和分类准确度:在6种缺失值填充算法中,AkNNI方法在各个数据集上取得的平均RMSE最低、平均皮尔逊相关系数最高以及平均分类准确率最高。同时,在高缺失率下,AkNNI方法在各个数据集上仍能保持较低的RMSE、较高的皮尔逊相关系数和较高的分类准确度。 展开更多
关键词 欧氏距离 K近邻 缺失值填充 概率密度 非均匀分布
下载PDF
基于覆盖树的自适应均值漂移聚类算法
14
作者 温柳英 庞柯 《计算机工程与设计》 北大核心 2024年第2期452-458,共7页
为解决均值漂移聚类算法聚类效果依赖于带宽参数的主观选取,以及处理密度变化大的数据集时聚类结果精确度问题,提出一种基于覆盖树的自适应均值漂移聚类算法MSCT(MeanShift based on Cover-Tree)。构建一个覆盖树数据集,在计算漂移向量... 为解决均值漂移聚类算法聚类效果依赖于带宽参数的主观选取,以及处理密度变化大的数据集时聚类结果精确度问题,提出一种基于覆盖树的自适应均值漂移聚类算法MSCT(MeanShift based on Cover-Tree)。构建一个覆盖树数据集,在计算漂移向量过程中结合覆盖树数据集获得新的漂移向量结果KnnShift,在不同数据密度分布的数据集上都能自适应产生带宽参数,所有数据点完成漂移过程后获得聚类结果。实验结果表明,MSCT算法的聚类效果整体上优于MS、DBSCAN等算法。 展开更多
关键词 聚类 均值漂移 覆盖树 滑动窗口 最近邻 密度聚类 机器学习
下载PDF
综合天气相似分析方法及其气象预报服务应用
15
作者 李宇中 董良淼 +3 位作者 梁存桂 刘国忠 覃月凤 黄伊曼 《气象科技》 2024年第4期571-582,共12页
为改进传统“切片”式天气形势相似分析方法存在的不同切片相似结果不一致、预报稳定性欠佳问题,借鉴大数据思维,将天气系统视为一个由高中低层大气相互配合、静力热力动力条件相互影响的综合体,以多种气象要素再分析格点资料为基础,采... 为改进传统“切片”式天气形势相似分析方法存在的不同切片相似结果不一致、预报稳定性欠佳问题,借鉴大数据思维,将天气系统视为一个由高中低层大气相互配合、静力热力动力条件相互影响的综合体,以多种气象要素再分析格点资料为基础,采用机器学习PCA方法对原始数据进行降维、浓缩,经归一化处理后构建出适于综合天气相似分析的样本衍生特征因子矩阵;然后使用KNN算法计算样本间各特征维度的相似距离、并结合方差贡献率赋予其相应的权重,最终按综合相似距离大小排序给出目标样本在历史天气形势库中的综合最相似序列,从而实现对传统相似天气预报方法的升级改进。对比分析和测试应用表明,该方法可提供多要素、多层次“立体”综合相似下的一致性结论,有助于预报员更好地理解天气系统结构和演变过程、进而更准确地研判可能发生的相关天气现象,在精细化气象预报服务方面有良好的应用前景。在2023年以来的几次广西区域性极端降水气象预报服务中,该方法取得了较为显著的应用效果。 展开更多
关键词 数据驱动 相似距离 PCA降维 衍生特征 KNN
下载PDF
高光谱影像逆近邻密度峰值聚类的波段选择算法
16
作者 孙根云 李忍忍 +3 位作者 张爱竹 安娜 付航 潘兆杰 《测绘学报》 EI CSCD 北大核心 2024年第1期8-19,共12页
密度峰值聚类波段选择算法利用局部密度描述波段的密度信息,然而现有的局部密度容易忽略波段分布的全局信息,不能有效描述波段的分布特征,导致波段子集分类精度有限。为解决上述问题,本文提出一种基于逆近邻的密度峰值聚类波段选择算法... 密度峰值聚类波段选择算法利用局部密度描述波段的密度信息,然而现有的局部密度容易忽略波段分布的全局信息,不能有效描述波段的分布特征,导致波段子集分类精度有限。为解决上述问题,本文提出一种基于逆近邻的密度峰值聚类波段选择算法。首先,利用波段与其K近邻构建K近邻有向图,获取波段的逆近邻,以及波段之间的共享近邻和共享逆近邻;然后,利用共享近邻和共享逆近邻并集的个数作为波段之间的相似度,利用波段与其逆近邻的平均欧氏距离和相似度构造增强型局部密度;最后,将增强型局部密度、距离因子、信息熵三者的乘积作为权重值,根据权重值挑选波段子集。为提高试验效率和实用性,本文算法还提出一种自动获得K值的自适应K值方法。在3个高光谱标准数据集上的试验结果表明,本文算法得到的波段子集比其他先进算法挑选的波段有更好的分类性能,尤其是在波段数较少的情况下,而且计算效率较高。 展开更多
关键词 高光谱影像 波段选择 密度峰值聚类 逆近邻 局部密度 自适应K值
下载PDF
一种多粒度空间的快速构建方法 被引量:1
17
作者 赵凡 张清华 +2 位作者 吴成英 谢秦 王国胤 《计算机学报》 EI CAS CSCD 北大核心 2024年第9期2141-2162,共22页
粒计算是模拟人脑多粒度认知模式处理复杂问题的一种方法.模糊商空间理论作为粒计算的一种典型模型,将复杂问题渐进式粒化成为分层递阶的多粒度空间,从而实现层次化的求解.然而,面对海量高维数据,现有模糊商空间模型通过模糊相似关系构... 粒计算是模拟人脑多粒度认知模式处理复杂问题的一种方法.模糊商空间理论作为粒计算的一种典型模型,将复杂问题渐进式粒化成为分层递阶的多粒度空间,从而实现层次化的求解.然而,面对海量高维数据,现有模糊商空间模型通过模糊相似关系构建多粒度空间的效率将大幅降低.一方面,模糊相似关系需要计算数据空间中任意两个对象之间的相似性,不利于处理体量大的数据集;另一方面,模糊相似关系包含大量冗余信息,导致后续步骤中存在大量的冗余计算.因此,本文基于2近邻模糊关系,提出了多粒度空间的快速构建方法,在保证面向下游分类任务时性能不下降的前提下,极大地提升了多粒度空间构建效率.首先,基于k近邻算法提出k近邻模糊关系,并分析证明其关键性质;然后,面向多粒度空间构建任务,对k近邻模糊关系进行参数分析,从理论上证明k取2时即可包含数据空间中全部有效信息;随后,定义了最近邻和次近邻两阶段的有效位置数,提出了模糊相似关系有效值和有效位置提取算法,多粒度空间构建效率提升了75%左右.最后,通过在9个UCI数据集、3个UKB数据集、3个图像数据集和3个文本数据集上的相关实验,验证了该算法构建多粒度空间的高效性、正确性以及面向下游分类任务的有效性、稳定性和显著性. 展开更多
关键词 粒计算 多粒度空间 K近邻 模糊关系 模糊商空间
下载PDF
基于密文KNN检索的室内定位隐私保护算法 被引量:1
18
作者 欧锦添 乐燕芬 施伟斌 《数据采集与处理》 CSCD 北大核心 2024年第2期456-470,共15页
在定位请求服务中,如何保护用户的位置隐私和位置服务提供商(Localization service provider,LSP)的数据隐私是关系到WiFi指纹定位应用的一个具有挑战性的问题。基于密文域的K-近邻(K-nearest neighbors,KNN)检索,本文提出了一种适用于... 在定位请求服务中,如何保护用户的位置隐私和位置服务提供商(Localization service provider,LSP)的数据隐私是关系到WiFi指纹定位应用的一个具有挑战性的问题。基于密文域的K-近邻(K-nearest neighbors,KNN)检索,本文提出了一种适用于三方的定位隐私保护算法,能有效提升对LSP指纹信息隐私的保护强度并降低计算开销。服务器和用户分别完成对指纹信息和定位请求的加密,而第三方则基于加密指纹库和加密定位请求,在隐私状态下完成对用户的位置估计。所提算法把各参考点的位置信息随机嵌入指纹,可避免恶意用户获取各参考点的具体位置;进一步利用布隆滤波器在隐藏接入点信息的情况下,第三方可完成参考点的在线匹配,实现对用户隐私状态下的粗定位,可与定位算法结合降低计算开销。在公共数据集和实验室数据集中,对两种算法的安全、开销和定位性能进行了全面的评估。与同类加密算法比较,在不降低定位精度的情况下,进一步增强了对数据隐私的保护。 展开更多
关键词 隐私保护 指纹定位 密文K-近邻检索 布隆滤波器 WIFI
下载PDF
基于异常检测的标签噪声过滤框架 被引量:1
19
作者 许茂龙 姜高霞 王文剑 《计算机科学》 CSCD 北大核心 2024年第2期87-99,共13页
噪声是影响机器学习模型可靠性的重要因素,而标签噪声相比特征噪声对模型训练更具决定性的影响。噪声过滤是处理标签噪声的一种有效方法,它不需要估计噪声率,也不需要依赖任何损失函数,然而目前大多数标签噪声过滤算法都会面临过度清洗... 噪声是影响机器学习模型可靠性的重要因素,而标签噪声相比特征噪声对模型训练更具决定性的影响。噪声过滤是处理标签噪声的一种有效方法,它不需要估计噪声率,也不需要依赖任何损失函数,然而目前大多数标签噪声过滤算法都会面临过度清洗问题。针对此问题,文中提出了基于异常检测的标签噪声过滤框架,并在此框架下给出了一种自适应近邻聚类的标签噪声过滤算法AdNN(Label Noise Filtering via Adaptive Nearest Neighbor Clustering)。该算法分别考虑分类问题中的每一个类别,把标签噪声检测问题转化成离群点检测问题,识别出每一个类别的离群点,然后根据相对密度去除离群点中的非噪声样本,得到噪声备选集,最后通过噪声因子对噪声备选集中的离群点进行噪声识别和过滤。实验结果表明,在合成数据集和公开数据集上,所提噪声过滤方法可以减轻过度清洗现象,同时能够得到很好的噪声过滤效果和分类预测性能。 展开更多
关键词 标签噪声过滤 离群点检测 自适应k近邻 相对密度 噪声因子
下载PDF
基于AKNN异常检验与ADPC聚类的低压台区拓扑识别方法 被引量:3
20
作者 史子轶 夏向阳 +3 位作者 刘佳斌 谷阳洋 王玉龙 洪佳瑶 《中国电力》 CSCD 北大核心 2024年第5期168-177,共10页
低压台区拓扑信息的准确记录是进行台区线损分析、三相不平衡治理等工作的基础。针对目前拓扑档案排查成本高且效率低的问题,提出一种基于自适应k近邻(adaptive k nearest neighbor,AKNN)异常检验和自适应密度峰值(adaptive density pea... 低压台区拓扑信息的准确记录是进行台区线损分析、三相不平衡治理等工作的基础。针对目前拓扑档案排查成本高且效率低的问题,提出一种基于自适应k近邻(adaptive k nearest neighbor,AKNN)异常检验和自适应密度峰值(adaptive density peaks clustering,ADPC)聚类的低压台区拓扑识别方法。该方法利用动态时间弯曲(dynamic time warping,DTW)距离度量低压台区用户间电压序列的相似性,通过AKNN异常检验算法检验并校正异常的用户与变压器之间的关系(简称“户变关系”),在得到正确户变关系的基础上,采用ADPC聚类算法对台区内用户进行相位识别;最后,通过实际台区算例分析验证了该方法不需要人为设置参数,能有效实现低压台区的拓扑识别,具有较高的适用性与准确性。 展开更多
关键词 低压台区 户变关系 相位识别 自适应k近邻 自适应密度峰值
下载PDF
上一页 1 2 112 下一页 到第
使用帮助 返回顶部