Measurements were performed of K-shell ionization cross sections of Ti element by 10~30 keV positron impact using the thick-target method. The effects of multiple scattering of incident positron and from bremsstrahlu...Measurements were performed of K-shell ionization cross sections of Ti element by 10~30 keV positron impact using the thick-target method. The effects of multiple scattering of incident positron and from bremsstrahlung photons and annihilation photons with the thick-target method are discussed with the Monte Carlo code PENELOPE. Meanwhile, the Monte Carlo method is also applied to determine the detection efficiencies of X- and γ-ray detectors. Our experimental K-shell ionization cross sections for Ti element are compared with the distorted-wave Born approximation (DWBA) theoretical predictions, and it is found that the agreement of the experimental data and theoretical values is good and this indicates that the experimental method adopted in this study is applicable.展开更多
The K-shell ionization probability Pk was measured as a function of Ep across the strong resonance 56Fe(p,p)56Fe at 2.522 MeV and about 50 % variation was observed. For a large ratio of the K-shell binding energy to t...The K-shell ionization probability Pk was measured as a function of Ep across the strong resonance 56Fe(p,p)56Fe at 2.522 MeV and about 50 % variation was observed. For a large ratio of the K-shell binding energy to the total width of the nuclear resonance, Uk/Г≥5, the present experimental result is still in good agreement with theoretical calculation based on Blair and Anholt’s formula.展开更多
Fe K-shell ionization cross sections induced by 2.4-6.0 MeV Xe^20+ are measured and compared with different binary- encounter-approximation (BEA) models. The results indicate that the BEA model corrected both by th...Fe K-shell ionization cross sections induced by 2.4-6.0 MeV Xe^20+ are measured and compared with different binary- encounter-approximation (BEA) models. The results indicate that the BEA model corrected both by the Coulomb repulsion and by the effective nuclear charge (Zeff) agrees well with the experimental data. Comparison of Fe K-shell X-ray emission induced by 5 MeV xenon ions with different initial charge states (20+, 22+, 26+, 30+) verifies the applicability of the effective nuclear charge (Zeff) correction for the BEA model. It is found that Zeff correction is reasonable to describe direct ionization induced by xenon ions with no initial M-shell vacancies. However, when the M shell is opened, the Zeff corrected BEA model is unable to explain the inner-shell ionization, and the electron transfer by molecular-orbital promotion should be considered.展开更多
An empirical formula is proposed to describe the K-shell ionization cross sections by electron impact over a wide range of atomic numbers and overvoltages U(the ratio between the electron incident energy and the bindi...An empirical formula is proposed to describe the K-shell ionization cross sections by electron impact over a wide range of atomic numbers and overvoltages U(the ratio between the electron incident energy and the binding energy of the electrons in the K-shell).The study is based on the analysis of existing experimental data of K-shell ionization cross sections.The expression shows the results in good agreement with the data for Z<6 atoms as well as for 6≤Z≤79.展开更多
The K-shell ionization cross sections of Cr, Ni and Cu elements by 7.5-25 keV electron impact have been measured.The experimental data have also been compared with the theoretical predictions of the Hippler and Mayol-...The K-shell ionization cross sections of Cr, Ni and Cu elements by 7.5-25 keV electron impact have been measured.The experimental data have also been compared with the theoretical predictions of the Hippler and Mayol-Salvat models. In general, it seems that the Mayol-Salvat model can provide a better description to our experimental data.展开更多
Electron-induced Zn ionization cross sectionSj which are scarce,have been obtained from measurement of Ka x-ray emission at energies from near threshold to 25 keV.The influence of substrate of thin target on ionizatio...Electron-induced Zn ionization cross sectionSj which are scarce,have been obtained from measurement of Ka x-ray emission at energies from near threshold to 25 keV.The influence of substrate of thin target on ionization cross sections has been corrected by using the bipartition model of electron transport.The experimental results are satisfactory as compared with empirical formula of Green and Cosslett.展开更多
The projectile energy dependence of K-shell ionization probability have been measured across the narrow resonance 2.522Mev with large ratio of Uk/Г=5.3 in the reaction^(56)Fe(p,p)^(56)Fe.The frame work of the theory ...The projectile energy dependence of K-shell ionization probability have been measured across the narrow resonance 2.522Mev with large ratio of Uk/Г=5.3 in the reaction^(56)Fe(p,p)^(56)Fe.The frame work of the theory proposed by Blair and Anholt was introduced to analyze the results.展开更多
Double K-shell ionization of atoms by collisions with charged ions is one of typical two-electron processes andattracts considerable attention both in term of basic theory and experiment. Radiative de-excitation of th...Double K-shell ionization of atoms by collisions with charged ions is one of typical two-electron processes andattracts considerable attention both in term of basic theory and experiment. Radiative de-excitation of the doubleK-shell vacancy states of atoms leads to the emission of so called K X-ray hyper-satellites (Kh,Kh . . . )[1], whichgives us the insight into the decay modes of multiply ionized ions as well as the ionization processes during ion-atomcollisions. Contrary to the long-winded and difficult experiments with heavy target due to the low detection efficiencyof K X-ray hyper-satellites with crystal spectrometers[2??4], the bulk of knowledge concerning double K-shellionization in ion-atom collisions has been obtained for light target.展开更多
In collisions between energetic heavy ions and atoms,the strong Coulomb field of one of collision partners can cause double K-shell ionization of the second one.In previous work we have studied the mechanism of double...In collisions between energetic heavy ions and atoms,the strong Coulomb field of one of collision partners can cause double K-shell ionization of the second one.In previous work we have studied the mechanism of double K-shell ionization in krypton atom by bare xenon under different perturbation strengths κ=Zp/vp,where Zp is the charge of the projectile and vp is its velocity in atomic units.The measured double-to-single K-shell ionization cross-section ratio is proportional to the perturbation strengthin the rough region of κ<1,but shows less rapidly increasing when κ>1[1].In order to further investigate such process in a wide rang of perturbation strength,an experiment focusing on K-shell ionization of ions was carried out at HIRFL-CSR in 2017.Ni19+ions with a energy of 95 MeV/u were stored in CSRe to interact with hydrogen,argon,krypton and xenon target,respectively.The X rays produced in collisions of the ions with the target were detected by two Silicon Drift Detectors(SDD)mounted at 35◦and 60◦observation angles with respect to the ion beam direction.展开更多
Interfacial solar evaporation holds immense potential for brine desalination with low carbon footprints and high energy utilization.Hydrogels,as a tunable material platform from the molecular level to the macroscopic ...Interfacial solar evaporation holds immense potential for brine desalination with low carbon footprints and high energy utilization.Hydrogels,as a tunable material platform from the molecular level to the macroscopic scale,have been considered the most promising candidate for solar evaporation.However,the simultaneous achievement of high evaporation efficiency and satisfactory tolerance to salt ions in brine remains a challenging scientific bottleneck,restricting the widespread application.Herein,we report ionization engineering,which endows polymer chains of hydrogels with electronegativity for impeding salt ions and activating water molecules,fundamentally overcoming the hydrogel salt-impeded challenge and dramatically expediting water evaporating in brine.The sodium dodecyl benzene sulfonate-modified carbon black is chosen as the solar absorbers.The hydrogel reaches a ground-breaking evaporation rate of 2.9 kg m−2 h−1 in 20 wt%brine with 95.6%efficiency under one sun irradiation,surpassing most of the reported literature.More notably,such a hydrogel-based evaporator enables extracting clean water from oversaturated salt solutions and maintains durability under different high-strength deformation or a 15-day continuous operation.Meantime,on the basis of the cation selectivity induced by the electronegativity,we first propose an all-day system that evaporates during the day and generates salinity-gradient electricity using waste-evaporated brine at night,anticipating pioneer a new opportunity for all-day resource-generating systems in fields of freshwater and electricity.展开更多
The electron-impact single ionization cross section for W8+ion has been calculated using flexible atomic code,employing the level-to-level distorted-wave approximation.This calculations takes into account contribution...The electron-impact single ionization cross section for W8+ion has been calculated using flexible atomic code,employing the level-to-level distorted-wave approximation.This calculations takes into account contributions form both direct ionization(DI)and excitation autoionization(EA).However,the theoretical predictions,based solely on the ground state,tends to underestimate the experimental values.This discrepancy can be mitigated by incorporation contributions from excited states.We extended the theoretical analysis,including the contributions from the long-lived metastable states with lifetimes exceeding 1.5×10-5 s.We employed two statistical models to predict the fraction of ground state ions in the parent ion beam.Assuming a 79%fraction of parent ions in ground configuration,the experiment measurements align with the predictions.Furthermore we derived the theoretical cross-section for the ground state as correlated plasma rate coefficients,and compared it with existing data.Despite the uncertainty in our calculations,our results are still acceptable.展开更多
Rydberg state excitation(RSE) is a highly non-linear physical phenomenon that is induced by the ionization of atoms or molecules in strong femtosecond laser fields. Here we observe that both parent and fragments(S, C,...Rydberg state excitation(RSE) is a highly non-linear physical phenomenon that is induced by the ionization of atoms or molecules in strong femtosecond laser fields. Here we observe that both parent and fragments(S, C, OC) of the triatomic molecule carbonyl sulfide(OCS) can survive strong 800 nm or 400 nm laser fields in high Rydberg states. The dependence of parent and fragment RSE yields on laser intensity and ellipticity is investigated in both laser fields, and the results are compared with those for strong-field ionization. Distinctly different tendencies for laser intensity and ellipticity are observed for fragment RSE compared with the corresponding ions. The mechanisms of RSE and strong-field ionization of OCS molecules in different laser fields are discussed based on the experimental results. Our study sheds some light on the strong-field excitation and ionization of molecules irradiated by femtosecond NIR and UV laser fields.展开更多
We study the above-threshold ionization(ATI)process of atoms exposed to fundamental and high-frequency lasers with arbitrary ellipticity by applying the frequency-domain theory.It is found that the angular-resolved AT...We study the above-threshold ionization(ATI)process of atoms exposed to fundamental and high-frequency lasers with arbitrary ellipticity by applying the frequency-domain theory.It is found that the angular-resolved ATI spectrum is sensitive to ellipticities of two lasers and emitted angles of the photoelectron.Particularly for the photon energy of the highfrequency laser more than atomic ionization potential,the width of plateau tends to a constant with increasing ellipticity of fundamental field,the dip structure disappears with increasing ellipticity of the high-frequency field.With the help of the quantum channel analysis,it is shown that the angular distribution depends mainly on the ellipticity of high-frequency field in the case that its frequency is high.Moreover,one can see that the maximal and minimal energies in quantum numerical results are in good agreement with the classical prediction.Our investigation may provide theoretical support for experimental research on polarization control of ionization in elliptically polarized two-color laser fields.展开更多
We investigate propagation of dust ion acoustic solitary wave(DIASW)in a multicomponent dusty plasma with adiabatic ions,superthermal electrons,and stationary dust.The reductive perturbation method is employed to deri...We investigate propagation of dust ion acoustic solitary wave(DIASW)in a multicomponent dusty plasma with adiabatic ions,superthermal electrons,and stationary dust.The reductive perturbation method is employed to derive the damped Korteweg-de Vries(DKdV)equation which describes DIASW.The result reveals that the adiabaticity of ions significantly modifies the basic features of the DIASW.The ionization effect makes the solitary wave grow,while collisions reduce the growth rate and even lead to the damping.With the increases in ionization cross sectionΔσ/σ_(0),ion-to-electron density ratioδ_(ie)and superthermal electrons parameterκ,the effect of ionization on DIASW enhances.展开更多
The double ionization process of molecules driven by co-rotating two-color circularly polarized fields is investigated with a three-dimensional classical ensemble model. Numerical results indicate that a considerable ...The double ionization process of molecules driven by co-rotating two-color circularly polarized fields is investigated with a three-dimensional classical ensemble model. Numerical results indicate that a considerable part of the sequential double ionization(DI) events of molecules occur through internal collision double ionization(ICD), and the ICD recollision mechanism is significantly different from that in non-sequential double ionization(NSDI). By analyzing the results of internuclear distances R = 5 a.u. and 2 a.u., these two recollision mechanisms are studied in depth. It is found that the dynamic behaviors of the recollision mechanisms of NSDI and ICD are similar. For NSDI, the motion range of electrons after the ionization is relatively large, and the electrons will return to the core after a period of time. In the ICD process,electrons will rotate around the parent ion before ionization, and the distance of the electron motion is relatively small. After a period of time, the electrons will come back to the core and collide with another electron. Furthermore, the molecular internuclear distance has a significant effect on the electron dynamic behavior of the two ionization mechanisms. This study will help to understand the multi-electron ionization process of complex systems.展开更多
Electron dynamics during non-sequential double ionization(NSDI) is one of the most attractive areas of research in the field of laser–atom or laser–molecule interaction. Based on the classic two-dimensional model, w...Electron dynamics during non-sequential double ionization(NSDI) is one of the most attractive areas of research in the field of laser–atom or laser–molecule interaction. Based on the classic two-dimensional model, we study the process of NSDI of argon atoms driven by a few-cycle orthogonal two-color laser field composed of 800 nm and 400 nm laser pulses. By changing the relative phase of the two laser pulses, a localized enhancement of NSDI yield is observed at 0.5πand 1.5π, which could be attributed to a rapid and substantial increase in the number of electrons returning to the parent ion within extremely short time intervals at these specific phases. Through the analysis of the electron–electron momentum correlations within different time windows of NSDI events and the angular distributions of emitted electrons in different channels, we observe a more pronounced electron–electron correlation phenomenon in the recollision-induced ionization(RII) channel. This is attributed to the shorter delay time in the RII channel.展开更多
The absolute partial and total cross sections for electron impact ionization of carbon monoxide are reported for electron energies from 350 eV to 8000 eV.The product ions(CO^(+),C^(+),O^(+),CO^(2+),C^(2+),and O^(2+))a...The absolute partial and total cross sections for electron impact ionization of carbon monoxide are reported for electron energies from 350 eV to 8000 eV.The product ions(CO^(+),C^(+),O^(+),CO^(2+),C^(2+),and O^(2+))are measured by employing an ion imaging mass spectrometer and two ion-pair dissociation channels(C^(+)+O^(+)and C^(2+)+O^(+))are identified.The absolute cross sections for producing individual ions and their total,as well as for the ion-pair dissociation channels are obtained by normalizing the data of CO^(+)to that of Ar^(+)from CO-Ar mixture target with a fixed 1:1 ratio.The overall errors are evaluated by considering various kinds of uncertainties.A comprehensive comparison is made with the available data,which shows a good agreement with each other over the energy ranges that are overlapped.This work presents new cross-section data with electron energies above 1000 eV.展开更多
Double differential cross section (DDCS) of First-Born approximation is calcu-lated for the ionization of metastable 3d-state hydrogen atoms by electron impact energy at 150 eV and 250 eV. A multiple scattering theory...Double differential cross section (DDCS) of First-Born approximation is calcu-lated for the ionization of metastable 3d-state hydrogen atoms by electron impact energy at 150 eV and 250 eV. A multiple scattering theory is applied in the present study. The present results are compared with the other related the-oretical results for the ionization of hydrogen atoms from different metastable states and ground-state experimental results. The findings demonstrate a strong qualitative agreement with the existing results. The obtained results have an extensive scope for further study of such an ionization process.展开更多
Using the semiclassical ensemble model,the dependence of relative amplitude for the recollision dynamics in nonsequential double ionization(NSDI)of neon atom driven by the orthogonally polarized two-color field(OTC)la...Using the semiclassical ensemble model,the dependence of relative amplitude for the recollision dynamics in nonsequential double ionization(NSDI)of neon atom driven by the orthogonally polarized two-color field(OTC)laser field is theoretically studied.And the dynamics in two typical collision pathways,recollision-impact-ionization(RII)and recollisionexcitation with subsequent ionization(RESI),is systematically explored.Our results reveal that the V-shaped structure in the correlated momentum distribution is mainly caused by the RII mechanism when the relative amplitude of the OTC laser field is zero,and the first ionized electrons will quickly skim through the nucleus and share few energy with the second electron.As the relative amplitude increases,the V-shaped structure gradually disappears and electrons are concentrated on the diagonal in the electron correlation spectrum,indicating that the energy sharing after electrons collision is symmetric for OTC laser fields with large relative amplitudes.Our studies show that changing the relative amplitude of the OTC laser field can efficiently control the electron–electron collisions and energy exchange efficiency in the NSDI process.展开更多
Electronic processes within atoms and molecules reside on the timescale of attoseconds. Recent advances in the laserbased pump-probe interrogation techniques have made possible the temporal resolution of ultrafast ele...Electronic processes within atoms and molecules reside on the timescale of attoseconds. Recent advances in the laserbased pump-probe interrogation techniques have made possible the temporal resolution of ultrafast electronic processes on the attosecond timescale, including photoionization and tunneling ionization. These interrogation techniques include the attosecond streak camera, the reconstruction of attosecond beating by interference of two-photon transitions, and the attoclock. While the former two are usually employed to study photoionization processes, the latter is typically used to investigate tunneling ionization. In this review, we briefly overview these timing techniques towards an attosecond temporal resolution of ionization processes in atoms and molecules under intense laser fields. In particular, we review the backpropagation method, which is a novel hybrid quantum-classical approach towards the full characterization of tunneling ionization dynamics. Continued advances in the interrogation techniques promise to pave the pathway towards the exploration of ever faster dynamical processes on an ever shorter timescale.展开更多
基金supported by National Natural Science Foundation of China (Nos.10674097,10774106)
文摘Measurements were performed of K-shell ionization cross sections of Ti element by 10~30 keV positron impact using the thick-target method. The effects of multiple scattering of incident positron and from bremsstrahlung photons and annihilation photons with the thick-target method are discussed with the Monte Carlo code PENELOPE. Meanwhile, the Monte Carlo method is also applied to determine the detection efficiencies of X- and γ-ray detectors. Our experimental K-shell ionization cross sections for Ti element are compared with the distorted-wave Born approximation (DWBA) theoretical predictions, and it is found that the agreement of the experimental data and theoretical values is good and this indicates that the experimental method adopted in this study is applicable.
基金The Project Supported by National Natural Science Foundation of China
文摘The K-shell ionization probability Pk was measured as a function of Ep across the strong resonance 56Fe(p,p)56Fe at 2.522 MeV and about 50 % variation was observed. For a large ratio of the K-shell binding energy to the total width of the nuclear resonance, Uk/Г≥5, the present experimental result is still in good agreement with theoretical calculation based on Blair and Anholt’s formula.
基金Project supported by the National Basic Research Program of China(Grant No.2010CB832902)the National Natural Science Foundation of China(Grant Nos.11275241,11205225,11105192,and 11275238)
文摘Fe K-shell ionization cross sections induced by 2.4-6.0 MeV Xe^20+ are measured and compared with different binary- encounter-approximation (BEA) models. The results indicate that the BEA model corrected both by the Coulomb repulsion and by the effective nuclear charge (Zeff) agrees well with the experimental data. Comparison of Fe K-shell X-ray emission induced by 5 MeV xenon ions with different initial charge states (20+, 22+, 26+, 30+) verifies the applicability of the effective nuclear charge (Zeff) correction for the BEA model. It is found that Zeff correction is reasonable to describe direct ionization induced by xenon ions with no initial M-shell vacancies. However, when the M shell is opened, the Zeff corrected BEA model is unable to explain the inner-shell ionization, and the electron transfer by molecular-orbital promotion should be considered.
基金Supported by the National Natural Science Foundation of China under Grant No.19874045.
文摘An empirical formula is proposed to describe the K-shell ionization cross sections by electron impact over a wide range of atomic numbers and overvoltages U(the ratio between the electron incident energy and the binding energy of the electrons in the K-shell).The study is based on the analysis of existing experimental data of K-shell ionization cross sections.The expression shows the results in good agreement with the data for Z<6 atoms as well as for 6≤Z≤79.
基金Supported by the National Natural Science Foundation of China under Grant No.19874045。
文摘The K-shell ionization cross sections of Cr, Ni and Cu elements by 7.5-25 keV electron impact have been measured.The experimental data have also been compared with the theoretical predictions of the Hippler and Mayol-Salvat models. In general, it seems that the Mayol-Salvat model can provide a better description to our experimental data.
基金Supported by the National Natural Science Foundation of China under Grant No.19874045.
文摘Electron-induced Zn ionization cross sectionSj which are scarce,have been obtained from measurement of Ka x-ray emission at energies from near threshold to 25 keV.The influence of substrate of thin target on ionization cross sections has been corrected by using the bipartition model of electron transport.The experimental results are satisfactory as compared with empirical formula of Green and Cosslett.
基金Project supported by the Chinese National Science Foundation of Doctoral Research.
文摘The projectile energy dependence of K-shell ionization probability have been measured across the narrow resonance 2.522Mev with large ratio of Uk/Г=5.3 in the reaction^(56)Fe(p,p)^(56)Fe.The frame work of the theory proposed by Blair and Anholt was introduced to analyze the results.
文摘Double K-shell ionization of atoms by collisions with charged ions is one of typical two-electron processes andattracts considerable attention both in term of basic theory and experiment. Radiative de-excitation of the doubleK-shell vacancy states of atoms leads to the emission of so called K X-ray hyper-satellites (Kh,Kh . . . )[1], whichgives us the insight into the decay modes of multiply ionized ions as well as the ionization processes during ion-atomcollisions. Contrary to the long-winded and difficult experiments with heavy target due to the low detection efficiencyof K X-ray hyper-satellites with crystal spectrometers[2??4], the bulk of knowledge concerning double K-shellionization in ion-atom collisions has been obtained for light target.
文摘In collisions between energetic heavy ions and atoms,the strong Coulomb field of one of collision partners can cause double K-shell ionization of the second one.In previous work we have studied the mechanism of double K-shell ionization in krypton atom by bare xenon under different perturbation strengths κ=Zp/vp,where Zp is the charge of the projectile and vp is its velocity in atomic units.The measured double-to-single K-shell ionization cross-section ratio is proportional to the perturbation strengthin the rough region of κ<1,but shows less rapidly increasing when κ>1[1].In order to further investigate such process in a wide rang of perturbation strength,an experiment focusing on K-shell ionization of ions was carried out at HIRFL-CSR in 2017.Ni19+ions with a energy of 95 MeV/u were stored in CSRe to interact with hydrogen,argon,krypton and xenon target,respectively.The X rays produced in collisions of the ions with the target were detected by two Silicon Drift Detectors(SDD)mounted at 35◦and 60◦observation angles with respect to the ion beam direction.
基金the National Natural Science Foundation of China(Grant No.52076028).
文摘Interfacial solar evaporation holds immense potential for brine desalination with low carbon footprints and high energy utilization.Hydrogels,as a tunable material platform from the molecular level to the macroscopic scale,have been considered the most promising candidate for solar evaporation.However,the simultaneous achievement of high evaporation efficiency and satisfactory tolerance to salt ions in brine remains a challenging scientific bottleneck,restricting the widespread application.Herein,we report ionization engineering,which endows polymer chains of hydrogels with electronegativity for impeding salt ions and activating water molecules,fundamentally overcoming the hydrogel salt-impeded challenge and dramatically expediting water evaporating in brine.The sodium dodecyl benzene sulfonate-modified carbon black is chosen as the solar absorbers.The hydrogel reaches a ground-breaking evaporation rate of 2.9 kg m−2 h−1 in 20 wt%brine with 95.6%efficiency under one sun irradiation,surpassing most of the reported literature.More notably,such a hydrogel-based evaporator enables extracting clean water from oversaturated salt solutions and maintains durability under different high-strength deformation or a 15-day continuous operation.Meantime,on the basis of the cation selectivity induced by the electronegativity,we first propose an all-day system that evaporates during the day and generates salinity-gradient electricity using waste-evaporated brine at night,anticipating pioneer a new opportunity for all-day resource-generating systems in fields of freshwater and electricity.
基金Project supported by the National Natural Science Foundation of China(Grant No.12364034)the National Key Research and Development Program of China(Grant No.2022YFA1602501)the Science and Technology Project of Gansu Province,China(Grant No.23YFFA0074).
文摘The electron-impact single ionization cross section for W8+ion has been calculated using flexible atomic code,employing the level-to-level distorted-wave approximation.This calculations takes into account contributions form both direct ionization(DI)and excitation autoionization(EA).However,the theoretical predictions,based solely on the ground state,tends to underestimate the experimental values.This discrepancy can be mitigated by incorporation contributions from excited states.We extended the theoretical analysis,including the contributions from the long-lived metastable states with lifetimes exceeding 1.5×10-5 s.We employed two statistical models to predict the fraction of ground state ions in the parent ion beam.Assuming a 79%fraction of parent ions in ground configuration,the experiment measurements align with the predictions.Furthermore we derived the theoretical cross-section for the ground state as correlated plasma rate coefficients,and compared it with existing data.Despite the uncertainty in our calculations,our results are still acceptable.
基金Project supported by the National Key Program for S&T Research and Development(Grant No.2019YFA0307700)the National Natural Science Foundation of China(Grant Nos.12174148,11874179,12074144,and 12074146)。
文摘Rydberg state excitation(RSE) is a highly non-linear physical phenomenon that is induced by the ionization of atoms or molecules in strong femtosecond laser fields. Here we observe that both parent and fragments(S, C, OC) of the triatomic molecule carbonyl sulfide(OCS) can survive strong 800 nm or 400 nm laser fields in high Rydberg states. The dependence of parent and fragment RSE yields on laser intensity and ellipticity is investigated in both laser fields, and the results are compared with those for strong-field ionization. Distinctly different tendencies for laser intensity and ellipticity are observed for fragment RSE compared with the corresponding ions. The mechanisms of RSE and strong-field ionization of OCS molecules in different laser fields are discussed based on the experimental results. Our study sheds some light on the strong-field excitation and ionization of molecules irradiated by femtosecond NIR and UV laser fields.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.12104285,12074240,12204135,12374260,12264013,12204136,92250303,and 12074418)the Guangdong Basicand Applied Basic Research Foundation (Grant No.2022A1515011742)+5 种基金the Special Scientific Research Program supported by the Shaanxi Education Department (Grant No.22JK0423)the Natural Science Basic Research Program of Shaanxi Province of China (Grant Nos.2023-JC-QN-0085 and 2023-JC-QN-0267)the Hainan Provincial Natural Science Foundation of China (Grant Nos.122CXTD504,123MS002,123QN179,123QN180,and 122QN217)the Sino-German Mobility Programme (Grant No.M-0031)the Xi’an Aeronautical Institute 2023 Innovation and Entrepreneurship Training Program for college students (Grant No.S202311736036)the Course Ideological and Political Education Program (Grant No.23ZLGC5030)。
文摘We study the above-threshold ionization(ATI)process of atoms exposed to fundamental and high-frequency lasers with arbitrary ellipticity by applying the frequency-domain theory.It is found that the angular-resolved ATI spectrum is sensitive to ellipticities of two lasers and emitted angles of the photoelectron.Particularly for the photon energy of the highfrequency laser more than atomic ionization potential,the width of plateau tends to a constant with increasing ellipticity of fundamental field,the dip structure disappears with increasing ellipticity of the high-frequency field.With the help of the quantum channel analysis,it is shown that the angular distribution depends mainly on the ellipticity of high-frequency field in the case that its frequency is high.Moreover,one can see that the maximal and minimal energies in quantum numerical results are in good agreement with the classical prediction.Our investigation may provide theoretical support for experimental research on polarization control of ionization in elliptically polarized two-color laser fields.
基金supported by the Project of Scientific and Technological Innovation Base of Jiangxi Province,China (Grant No.20203CCD46008)the Key R&D Plan of Jiangxi Province,China (Grant No.20223BBH80006)+1 种基金the Natural Science Foundation of Jiangxi Province,China (Grant No.20212BAB211025)the Jiangxi Province Key Laboratory of Fusion and Information Control (Grant No.20171BCD40005)。
文摘We investigate propagation of dust ion acoustic solitary wave(DIASW)in a multicomponent dusty plasma with adiabatic ions,superthermal electrons,and stationary dust.The reductive perturbation method is employed to derive the damped Korteweg-de Vries(DKdV)equation which describes DIASW.The result reveals that the adiabaticity of ions significantly modifies the basic features of the DIASW.The ionization effect makes the solitary wave grow,while collisions reduce the growth rate and even lead to the damping.With the increases in ionization cross sectionΔσ/σ_(0),ion-to-electron density ratioδ_(ie)and superthermal electrons parameterκ,the effect of ionization on DIASW enhances.
基金the National Key Research and Development Program of China (Grant No.2019YFA0307700)the National Natural Science Foundation of China (Grant Nos.12074145 and 11975012)+1 种基金Jilin Provincial Research Foundation for Basic Research,China (Grant No.20220101003JC)Jilin Provincial Education Department (Grant No.JJKH20230284KJ)。
文摘The double ionization process of molecules driven by co-rotating two-color circularly polarized fields is investigated with a three-dimensional classical ensemble model. Numerical results indicate that a considerable part of the sequential double ionization(DI) events of molecules occur through internal collision double ionization(ICD), and the ICD recollision mechanism is significantly different from that in non-sequential double ionization(NSDI). By analyzing the results of internuclear distances R = 5 a.u. and 2 a.u., these two recollision mechanisms are studied in depth. It is found that the dynamic behaviors of the recollision mechanisms of NSDI and ICD are similar. For NSDI, the motion range of electrons after the ionization is relatively large, and the electrons will return to the core after a period of time. In the ICD process,electrons will rotate around the parent ion before ionization, and the distance of the electron motion is relatively small. After a period of time, the electrons will come back to the core and collide with another electron. Furthermore, the molecular internuclear distance has a significant effect on the electron dynamic behavior of the two ionization mechanisms. This study will help to understand the multi-electron ionization process of complex systems.
基金partly supported by the National Natural Science Foundation of China (Grant Nos. 12034008,12250003, and 11727810)the Program of Introducing Talents of Discipline to Universities 111 Project (B12024)。
文摘Electron dynamics during non-sequential double ionization(NSDI) is one of the most attractive areas of research in the field of laser–atom or laser–molecule interaction. Based on the classic two-dimensional model, we study the process of NSDI of argon atoms driven by a few-cycle orthogonal two-color laser field composed of 800 nm and 400 nm laser pulses. By changing the relative phase of the two laser pulses, a localized enhancement of NSDI yield is observed at 0.5πand 1.5π, which could be attributed to a rapid and substantial increase in the number of electrons returning to the parent ion within extremely short time intervals at these specific phases. Through the analysis of the electron–electron momentum correlations within different time windows of NSDI events and the angular distributions of emitted electrons in different channels, we observe a more pronounced electron–electron correlation phenomenon in the recollision-induced ionization(RII) channel. This is attributed to the shorter delay time in the RII channel.
基金Project supported by the National Key Research and Development Program of China (Grant No.2022YFA1602502)the National Natural Science Foundation of China (Grant No.12127804)the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant Nos.XDB34000000)。
文摘The absolute partial and total cross sections for electron impact ionization of carbon monoxide are reported for electron energies from 350 eV to 8000 eV.The product ions(CO^(+),C^(+),O^(+),CO^(2+),C^(2+),and O^(2+))are measured by employing an ion imaging mass spectrometer and two ion-pair dissociation channels(C^(+)+O^(+)and C^(2+)+O^(+))are identified.The absolute cross sections for producing individual ions and their total,as well as for the ion-pair dissociation channels are obtained by normalizing the data of CO^(+)to that of Ar^(+)from CO-Ar mixture target with a fixed 1:1 ratio.The overall errors are evaluated by considering various kinds of uncertainties.A comprehensive comparison is made with the available data,which shows a good agreement with each other over the energy ranges that are overlapped.This work presents new cross-section data with electron energies above 1000 eV.
文摘Double differential cross section (DDCS) of First-Born approximation is calcu-lated for the ionization of metastable 3d-state hydrogen atoms by electron impact energy at 150 eV and 250 eV. A multiple scattering theory is applied in the present study. The present results are compared with the other related the-oretical results for the ionization of hydrogen atoms from different metastable states and ground-state experimental results. The findings demonstrate a strong qualitative agreement with the existing results. The obtained results have an extensive scope for further study of such an ionization process.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.12204132 and 12304376)Excellent Youth Science Foundation of Shandong Province (Overseas) (Grant No.2022HWYQ-073)+1 种基金the Fundamental Research Funds for the Central Universities (Grant No.HIT.OCEF.2022042)Natural Science Foundation of Shandong Province (Grant No.ZR2023QA075)。
文摘Using the semiclassical ensemble model,the dependence of relative amplitude for the recollision dynamics in nonsequential double ionization(NSDI)of neon atom driven by the orthogonally polarized two-color field(OTC)laser field is theoretically studied.And the dynamics in two typical collision pathways,recollision-impact-ionization(RII)and recollisionexcitation with subsequent ionization(RESI),is systematically explored.Our results reveal that the V-shaped structure in the correlated momentum distribution is mainly caused by the RII mechanism when the relative amplitude of the OTC laser field is zero,and the first ionized electrons will quickly skim through the nucleus and share few energy with the second electron.As the relative amplitude increases,the V-shaped structure gradually disappears and electrons are concentrated on the diagonal in the electron correlation spectrum,indicating that the energy sharing after electrons collision is symmetric for OTC laser fields with large relative amplitudes.Our studies show that changing the relative amplitude of the OTC laser field can efficiently control the electron–electron collisions and energy exchange efficiency in the NSDI process.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.92150105,11834004,12227807,and 12241407)the Science and Technology Commission of Shanghai Municipality (Grant No.21ZR1420100)。
文摘Electronic processes within atoms and molecules reside on the timescale of attoseconds. Recent advances in the laserbased pump-probe interrogation techniques have made possible the temporal resolution of ultrafast electronic processes on the attosecond timescale, including photoionization and tunneling ionization. These interrogation techniques include the attosecond streak camera, the reconstruction of attosecond beating by interference of two-photon transitions, and the attoclock. While the former two are usually employed to study photoionization processes, the latter is typically used to investigate tunneling ionization. In this review, we briefly overview these timing techniques towards an attosecond temporal resolution of ionization processes in atoms and molecules under intense laser fields. In particular, we review the backpropagation method, which is a novel hybrid quantum-classical approach towards the full characterization of tunneling ionization dynamics. Continued advances in the interrogation techniques promise to pave the pathway towards the exploration of ever faster dynamical processes on an ever shorter timescale.