Using quantum algorithms to solve various problems has attracted widespread attention with the development of quantum computing.Researchers are particularly interested in using the acceleration properties of quantum a...Using quantum algorithms to solve various problems has attracted widespread attention with the development of quantum computing.Researchers are particularly interested in using the acceleration properties of quantum algorithms to solve NP-complete problems.This paper focuses on the well-known NP-complete problem of finding the minimum dominating set in undirected graphs.To expedite the search process,a quantum algorithm employing Grover’s search is proposed.However,a challenge arises from the unknown number of solutions for the minimum dominating set,rendering direct usage of original Grover’s search impossible.Thus,a swap test method is introduced to ascertain the number of iterations required.The oracle,diffusion operators,and swap test are designed with achievable quantum gates.The query complexity is O(1.414^(n))and the space complexity is O(n).To validate the proposed approach,qiskit software package is employed to simulate the quantum circuit,yielding the anticipated results.展开更多
This paper presents an improved Randomized Circle Detection (RCD) algorithm with the characteristic of circularity to detect randomized circle in images with complex background, which is not based on the Hough Transfo...This paper presents an improved Randomized Circle Detection (RCD) algorithm with the characteristic of circularity to detect randomized circle in images with complex background, which is not based on the Hough Transform. The experimental results denote that this algorithm can locate the circular mark of Printed Circuit Board (PCB).展开更多
The integrated circuit chip with high performance has a high sensitivity to the defects in manufacturing environments.When there are defects on a wafer,the defects may lead to the degradation of chip performance.It is...The integrated circuit chip with high performance has a high sensitivity to the defects in manufacturing environments.When there are defects on a wafer,the defects may lead to the degradation of chip performance.It is necessary to design effective detection approaches for the defects in order to ensure the reliability of wafer.In this paper,a new method based on image boundary extraction is presented for the detection of defects on a wafer.The method uses island model genetic algorithms to perform the segmentation of wafer images,and gets the optimal threshold values.The island model genetic algorithm uses two distinct subpopulations,it is a coarse grain parallel model.The individuals migration can occur between the two subpopulations to share genetic materials.A lot of experimental results show that the defect detection method proposed in this paper can obtain the features of defects effectively.展开更多
This paper addresses the problem of selecting a route for every pair of communicating nodes in a virtual circuit data network in order to minimize the average delay encountered by messages. The problem was previously ...This paper addresses the problem of selecting a route for every pair of communicating nodes in a virtual circuit data network in order to minimize the average delay encountered by messages. The problem was previously modeled as a network of M/M/1 queues. Agenetic algorithm to solve this problem is presented. Extensive computational results across a variety of networks are reported. These results indicate that the presented solution procedure outperforms the other methods in the literature and is effective for a wide range of traffic loads.展开更多
Based on the influence of circuit element tolerances to the k-fault diagnosis, a method of fault diagnosis is presented which is called minimum tolerance estimation algorithm and has clear physical meaning. Using this...Based on the influence of circuit element tolerances to the k-fault diagnosis, a method of fault diagnosis is presented which is called minimum tolerance estimation algorithm and has clear physical meaning. Using this’method, an effective estimation of the equivalent fault sources can be obtained with less computing time. It is especially worthwhile to point out that an adaptive sub-optimum algorithm, which comes from the above method, requires even less computing-labor and is particularly suitable to more complicated circuits as well as real-time fault location.展开更多
A quantum algorithm for solving the classical NP-complete problem - the Hamilton circuit is presented. The algorithm employs the quantum SAT and the quantum search algorithms. The algorithm is square-root faster than ...A quantum algorithm for solving the classical NP-complete problem - the Hamilton circuit is presented. The algorithm employs the quantum SAT and the quantum search algorithms. The algorithm is square-root faster than classical algorithm, and becomes exponentially faster than classical algorithm if nonlinear quantum mechanical computer is used.展开更多
This study presents a hybrid algorithm obtained by combining a genetic algorithm (GA) with successive quadratic sequential programming (SQP), namely GA-SQP. GA is the main optimizer, whereas SQP is used to refine the ...This study presents a hybrid algorithm obtained by combining a genetic algorithm (GA) with successive quadratic sequential programming (SQP), namely GA-SQP. GA is the main optimizer, whereas SQP is used to refine the results of GA, further improving the solution quality. The problem formulation is done in the framework named RUNE (fRamework for aUtomated aNalog dEsign), which targets solving nonlinear mono-objective and multi-objective optimization problems for analog circuits design. Two circuits are presented: a transimpedance amplifier (TIA) and an optical driver (Driver), which are both part of an Optical Network-on-Chip (ONoC). Furthermore, convergence characteristics and robustness of the proposed method have been explored through comparison with results obtained with SQP algorithm. The outcome is very encouraging and suggests that the hybrid proposed method is very efficient in solving analog design problems.展开更多
We present a rigorous proof that quantum circuit algorithm can be transformed into quantum adiabatic algorithm with the exact same time complexity. This means that from a quantum circuit algorithm of L gates we can co...We present a rigorous proof that quantum circuit algorithm can be transformed into quantum adiabatic algorithm with the exact same time complexity. This means that from a quantum circuit algorithm of L gates we can construct a quantum adiabatic algorithm with time complexity of O(L). Additionally, our construction shows that one may exponentially speed up some quantum adiabatic algorithms by properly choosing an evolution path.展开更多
Aiming at the problem of energy storage unit failure in the spring operating mechanism of low voltage circuit breakers(LVCBs).A fault diagnosis algorithm based on an improved Sparrow Search Algorithm(ISSA)optimized Ba...Aiming at the problem of energy storage unit failure in the spring operating mechanism of low voltage circuit breakers(LVCBs).A fault diagnosis algorithm based on an improved Sparrow Search Algorithm(ISSA)optimized Backpropagation Neural Network(BPNN)is proposed to improve the operational safety of LVCB.Taking the 1.5kV/4000A/75kA LVCB as an example.According to the current operating characteristics of the energy storage motor,fault characteristics are extracted based on Empirical Wavelet Transform(EWT).Traditional BPNN has problems such as difficulty adjusting network weights and thresholds,being sensitive to initial weights,and quickly falling into local optimal solutions.The Sparrow Search Algorithm(SSA)with self-adjusting weight factors combined with bidirectional mutations is added to optimize the selection of BPNN hyperparameters.The results show that the ISSA-BPNN can accurately and quickly distinguish six conditions of motor voltage reduction:motor voltage increase,motor voltage decrease,energy storage spring stuck,transmission gear stuck,regular state and energy storage spring not locked.It is suitable for fault diagnosis and detection of the energy storage part of LVCB.展开更多
处于改建阶段的智能变电站采样模式复杂,继电保护装置难以发现采样回路轻微异常,导致回路隐患暴露时间严重滞后。针对上述问题,分析改建时期智能变电站的采样模式和二次设备配置情况,提出基于同源录波数据比对的继电保护采样回路异常检...处于改建阶段的智能变电站采样模式复杂,继电保护装置难以发现采样回路轻微异常,导致回路隐患暴露时间严重滞后。针对上述问题,分析改建时期智能变电站的采样模式和二次设备配置情况,提出基于同源录波数据比对的继电保护采样回路异常检测方法。首先,利用双向编码器表征(bidirectional encoder representations from transformers,BERT)语言模型与余弦相似度算法,实现同源录波数据的通道匹配。然后,利用重采样技术和曼哈顿距离完成波形的采样频率统一与时域对齐。最后,基于动态时间规整(dynamic time warping,DTW)算法提出改进算法,并结合采样点偏移量共同设置采样回路的异常判据。算例分析表明,该方法可以完成录波数据的同源通道匹配,实现波形的一致性对齐,并且相比于传统DTW算法,改进DTW算法对异常状态识别的灵敏性和准确性更高。根据异常判据能够有效检测继电保护采样回路的异常状态,确保了智能变电站的安全可靠运行。展开更多
A small-signal equivalent circuit model and the ted. The equivalent lumped circuit, which takes the main extraction techniques for photodetector chips are presen- factors that limit a photodetector's RF performance i...A small-signal equivalent circuit model and the ted. The equivalent lumped circuit, which takes the main extraction techniques for photodetector chips are presen- factors that limit a photodetector's RF performance into consideration,is first determined based on the device's physical structure. The photodetector's S parameters are then on-wafer measured, and the measured raw data are processed with further calibration. A genetic algorithm is used to fit the measured data, thereby allowing us to calculate each parameter value of the model. Experimental resuits show that the modeled parameters are well matched to the measurements in a frequency range from 130MHz to 20GHz, and the proposed method is proved feasible. This model can give an exact description of the photodetector chip's high frequency performance,which enables an effective circuit-level prediction for photodetector and optoelectronic integrated circuits.展开更多
With research on the carrier phase synchronization and symbol synchronization algorithm of demodulation module, a synchronization circuit system is designed for GPS software receiver based on field programmable gate a...With research on the carrier phase synchronization and symbol synchronization algorithm of demodulation module, a synchronization circuit system is designed for GPS software receiver based on field programmable gate array (FPGA), and a series of experiment is done on the hardware platform. The result shows the all-digital synchronization and demodulation of GPS intermediate frequency (IF) signal can be realized and applied in embedded real-time GPS software receiver system. It is verified that the decision-directed joint tracking algorithm of carrier phase and symbol timing for received signals from GPS is reasonable. In addition, the loop works steadily and can be used for receiving GPS signals using synchronous demodulation. The synchronization circuit for GPS software receiver designed based on FPGA has the features of low cost, miniaturization, low power and real-time. Surely, it will become one of the development directions for GPS and even GNSS embedded real-time software receiver.展开更多
In this paper, an efficient thermal analysis method is presented for large scale compound semiconductor integrated circuits based on a heterojunction bipolar transistor with considering the change of thermal conductiv...In this paper, an efficient thermal analysis method is presented for large scale compound semiconductor integrated circuits based on a heterojunction bipolar transistor with considering the change of thermal conductivity with temperature.The influence caused by the thermal conductivity can be equivalent to the increment of the local temperature surrounding the individual device. The junction temperature for each device can be efficiently calculated by the combination of the semianalytic temperature distribution function and the iteration of local temperature with high accuracy, providing a temperature distribution for a full chip. Applying this method to the InP frequency divider chip and the GaAs analog to digital converter chip, the computational results well agree with the results from the simulator COMSOL and the infrared thermal imager respectively. The proposed method can also be applied to thermal analysis in various kinds of semiconductor integrated circuits.展开更多
The binary decision diagrams (BDDs) can give canonical representation to Boolean functions; they have wide applications in the design and verification of digital systems. A new method based on cultural algorithms fo...The binary decision diagrams (BDDs) can give canonical representation to Boolean functions; they have wide applications in the design and verification of digital systems. A new method based on cultural algorithms for minimizing the size of BDDs is presented in this paper. First of all, the coding of an individual representing a BDDs is given, and the fitness of an individual is defined. The population is built by a set of the individuals. Second, the implementations based on cultural algorithms for the minimization of BDDs, i.e., the designs of belief space and population space, and the designs of acceptance function and influence function, are given in detail. Third, the fault detection approaches using BDDs for digital circuits are studied. A new method for the detection of crosstalk faults by using BDDs is presented. Experimental results on a number of digital circuits show that the BDDs with small number of nodes can be obtained by the method proposed in this paper, and all test vectors of a fault in digital circuits can also be produced.展开更多
Electronic components' reliability has become the key of the complex system mission execution. Analog circuit is an important part of electronic components. Its fault diagnosis is far more challenging than that of...Electronic components' reliability has become the key of the complex system mission execution. Analog circuit is an important part of electronic components. Its fault diagnosis is far more challenging than that of digital circuit. Simulations and applications have shown that the methods based on BP neural network are effective in analog circuit fault diagnosis. Aiming at the tolerance of analog circuit,a combinatorial optimization diagnosis scheme was proposed with back propagation( BP) neural network( BPNN).The main contributions of this scheme included two parts:( 1) the random tolerance samples were added into the nominal training samples to establish new training samples,which were used to train the BP neural network based diagnosis model;( 2) the initial weights of the BP neural network were optimized by genetic algorithm( GA) to avoid local minima,and the BP neural network was tuned with Levenberg-Marquardt algorithm( LMA) in the local solution space to look for the optimum solution or approximate optimal solutions. The experimental results show preliminarily that the scheme substantially improves the whole learning process approximation and generalization ability,and effectively promotes analog circuit fault diagnosis performance based on BPNN.展开更多
A radial basis function network(RBF)has excellent generalization ability and approximation accuracy when its parameters are set appropriately.However,when relying only on traditional methods,it is difficult to obtain ...A radial basis function network(RBF)has excellent generalization ability and approximation accuracy when its parameters are set appropriately.However,when relying only on traditional methods,it is difficult to obtain optimal network parameters and construct a stable model as well.In view of this,a novel radial basis neural network(RBF-MLP)is proposed in this article.By connecting two networks to work cooperatively,the RBF’s parameters can be adjusted adaptively by the structure of the multi-layer perceptron(MLP)to realize the effect of the backpropagation updating error.Furthermore,a genetic algorithm is used to optimize the network’s hidden layer to confirm the optimal neurons(basis function)number automatically.In addition,a memristive circuit model is proposed to realize the neural network’s operation based on the characteristics of spin memristors.It is verified that the network can adaptively construct a network model with outstanding robustness and can stably achieve 98.33%accuracy in the processing of the Modified National Institute of Standards and Technology(MNIST)dataset classification task.The experimental results show that the method has considerable application value.展开更多
One kind of steepest descent incremental projection learning algorithm for improving the training of radial basis function(RBF)neural network is proposed,which is applied to analog circuit fault isolation.This algorit...One kind of steepest descent incremental projection learning algorithm for improving the training of radial basis function(RBF)neural network is proposed,which is applied to analog circuit fault isolation.This algorithm simplified the structure of network through optimum output layer coefficient with incremental projection learning(IPL)algorithm,and adjusted the parameters of the neural activation function to control the network scale and improve the network approximation ability.Compared to the traditional algorithm,the improved algorithm has quicker convergence rate and higher isolation precision.Simulation results show that this improved RBF network has much better performance,which can be used in analog circuit fault isolation field.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.62101600)the Science Foundation of China University of Petroleum,Beijing(Grant No.2462021YJRC008)the State Key Laboratory of Cryptology(Grant No.MMKFKT202109).
文摘Using quantum algorithms to solve various problems has attracted widespread attention with the development of quantum computing.Researchers are particularly interested in using the acceleration properties of quantum algorithms to solve NP-complete problems.This paper focuses on the well-known NP-complete problem of finding the minimum dominating set in undirected graphs.To expedite the search process,a quantum algorithm employing Grover’s search is proposed.However,a challenge arises from the unknown number of solutions for the minimum dominating set,rendering direct usage of original Grover’s search impossible.Thus,a swap test method is introduced to ascertain the number of iterations required.The oracle,diffusion operators,and swap test are designed with achievable quantum gates.The query complexity is O(1.414^(n))and the space complexity is O(n).To validate the proposed approach,qiskit software package is employed to simulate the quantum circuit,yielding the anticipated results.
基金supported by Science and Technology Project of Fujian Provincial Department of Education under contract JAT170917Youth Science and Research Foundation of Chengyi College Jimei University under contract C16005.
文摘This paper presents an improved Randomized Circle Detection (RCD) algorithm with the characteristic of circularity to detect randomized circle in images with complex background, which is not based on the Hough Transform. The experimental results denote that this algorithm can locate the circular mark of Printed Circuit Board (PCB).
基金supported by Guangdong Provincial Natural Science Foundation of China (7005833)
文摘The integrated circuit chip with high performance has a high sensitivity to the defects in manufacturing environments.When there are defects on a wafer,the defects may lead to the degradation of chip performance.It is necessary to design effective detection approaches for the defects in order to ensure the reliability of wafer.In this paper,a new method based on image boundary extraction is presented for the detection of defects on a wafer.The method uses island model genetic algorithms to perform the segmentation of wafer images,and gets the optimal threshold values.The island model genetic algorithm uses two distinct subpopulations,it is a coarse grain parallel model.The individuals migration can occur between the two subpopulations to share genetic materials.A lot of experimental results show that the defect detection method proposed in this paper can obtain the features of defects effectively.
文摘This paper addresses the problem of selecting a route for every pair of communicating nodes in a virtual circuit data network in order to minimize the average delay encountered by messages. The problem was previously modeled as a network of M/M/1 queues. Agenetic algorithm to solve this problem is presented. Extensive computational results across a variety of networks are reported. These results indicate that the presented solution procedure outperforms the other methods in the literature and is effective for a wide range of traffic loads.
基金Supported by the National Natural Science Foundation of Chilla
文摘Based on the influence of circuit element tolerances to the k-fault diagnosis, a method of fault diagnosis is presented which is called minimum tolerance estimation algorithm and has clear physical meaning. Using this’method, an effective estimation of the equivalent fault sources can be obtained with less computing time. It is especially worthwhile to point out that an adaptive sub-optimum algorithm, which comes from the above method, requires even less computing-labor and is particularly suitable to more complicated circuits as well as real-time fault location.
基金国家自然科学基金,国家重点基础研究发展计划(973计划),the HangTian Science Foundation
文摘A quantum algorithm for solving the classical NP-complete problem - the Hamilton circuit is presented. The algorithm employs the quantum SAT and the quantum search algorithms. The algorithm is square-root faster than classical algorithm, and becomes exponentially faster than classical algorithm if nonlinear quantum mechanical computer is used.
文摘This study presents a hybrid algorithm obtained by combining a genetic algorithm (GA) with successive quadratic sequential programming (SQP), namely GA-SQP. GA is the main optimizer, whereas SQP is used to refine the results of GA, further improving the solution quality. The problem formulation is done in the framework named RUNE (fRamework for aUtomated aNalog dEsign), which targets solving nonlinear mono-objective and multi-objective optimization problems for analog circuits design. Two circuits are presented: a transimpedance amplifier (TIA) and an optical driver (Driver), which are both part of an Optical Network-on-Chip (ONoC). Furthermore, convergence characteristics and robustness of the proposed method have been explored through comparison with results obtained with SQP algorithm. The outcome is very encouraging and suggests that the hybrid proposed method is very efficient in solving analog design problems.
基金Supported by the The National Key Research and Development Program of China under Grant Nos 2017YFA0303302 and 2018YFA030562the National Natural Science Foundation of China under Grant Nos 11334001 and 11429402
文摘We present a rigorous proof that quantum circuit algorithm can be transformed into quantum adiabatic algorithm with the exact same time complexity. This means that from a quantum circuit algorithm of L gates we can construct a quantum adiabatic algorithm with time complexity of O(L). Additionally, our construction shows that one may exponentially speed up some quantum adiabatic algorithms by properly choosing an evolution path.
基金This research was funded by Sichuan Science and Technology Program(2023YFSY0013).
文摘Aiming at the problem of energy storage unit failure in the spring operating mechanism of low voltage circuit breakers(LVCBs).A fault diagnosis algorithm based on an improved Sparrow Search Algorithm(ISSA)optimized Backpropagation Neural Network(BPNN)is proposed to improve the operational safety of LVCB.Taking the 1.5kV/4000A/75kA LVCB as an example.According to the current operating characteristics of the energy storage motor,fault characteristics are extracted based on Empirical Wavelet Transform(EWT).Traditional BPNN has problems such as difficulty adjusting network weights and thresholds,being sensitive to initial weights,and quickly falling into local optimal solutions.The Sparrow Search Algorithm(SSA)with self-adjusting weight factors combined with bidirectional mutations is added to optimize the selection of BPNN hyperparameters.The results show that the ISSA-BPNN can accurately and quickly distinguish six conditions of motor voltage reduction:motor voltage increase,motor voltage decrease,energy storage spring stuck,transmission gear stuck,regular state and energy storage spring not locked.It is suitable for fault diagnosis and detection of the energy storage part of LVCB.
文摘处于改建阶段的智能变电站采样模式复杂,继电保护装置难以发现采样回路轻微异常,导致回路隐患暴露时间严重滞后。针对上述问题,分析改建时期智能变电站的采样模式和二次设备配置情况,提出基于同源录波数据比对的继电保护采样回路异常检测方法。首先,利用双向编码器表征(bidirectional encoder representations from transformers,BERT)语言模型与余弦相似度算法,实现同源录波数据的通道匹配。然后,利用重采样技术和曼哈顿距离完成波形的采样频率统一与时域对齐。最后,基于动态时间规整(dynamic time warping,DTW)算法提出改进算法,并结合采样点偏移量共同设置采样回路的异常判据。算例分析表明,该方法可以完成录波数据的同源通道匹配,实现波形的一致性对齐,并且相比于传统DTW算法,改进DTW算法对异常状态识别的灵敏性和准确性更高。根据异常判据能够有效检测继电保护采样回路的异常状态,确保了智能变电站的安全可靠运行。
文摘A small-signal equivalent circuit model and the ted. The equivalent lumped circuit, which takes the main extraction techniques for photodetector chips are presen- factors that limit a photodetector's RF performance into consideration,is first determined based on the device's physical structure. The photodetector's S parameters are then on-wafer measured, and the measured raw data are processed with further calibration. A genetic algorithm is used to fit the measured data, thereby allowing us to calculate each parameter value of the model. Experimental resuits show that the modeled parameters are well matched to the measurements in a frequency range from 130MHz to 20GHz, and the proposed method is proved feasible. This model can give an exact description of the photodetector chip's high frequency performance,which enables an effective circuit-level prediction for photodetector and optoelectronic integrated circuits.
基金supported in part by the National High Technology Research and Development Program of China (863 Program)(2006AA12A108)CSC International Scholarship (2008104769)
文摘With research on the carrier phase synchronization and symbol synchronization algorithm of demodulation module, a synchronization circuit system is designed for GPS software receiver based on field programmable gate array (FPGA), and a series of experiment is done on the hardware platform. The result shows the all-digital synchronization and demodulation of GPS intermediate frequency (IF) signal can be realized and applied in embedded real-time GPS software receiver system. It is verified that the decision-directed joint tracking algorithm of carrier phase and symbol timing for received signals from GPS is reasonable. In addition, the loop works steadily and can be used for receiving GPS signals using synchronous demodulation. The synchronization circuit for GPS software receiver designed based on FPGA has the features of low cost, miniaturization, low power and real-time. Surely, it will become one of the development directions for GPS and even GNSS embedded real-time software receiver.
基金Project supported by the Advance Research Foundation of China(Grant No.9140Axxx501)the National Defense Advance Research Project,China(Grant No.3151xxxx301)+1 种基金the Frontier Innovation Program,China(Grant No.48xx4)the 111 Project,China(Grant No.B12026)
文摘In this paper, an efficient thermal analysis method is presented for large scale compound semiconductor integrated circuits based on a heterojunction bipolar transistor with considering the change of thermal conductivity with temperature.The influence caused by the thermal conductivity can be equivalent to the increment of the local temperature surrounding the individual device. The junction temperature for each device can be efficiently calculated by the combination of the semianalytic temperature distribution function and the iteration of local temperature with high accuracy, providing a temperature distribution for a full chip. Applying this method to the InP frequency divider chip and the GaAs analog to digital converter chip, the computational results well agree with the results from the simulator COMSOL and the infrared thermal imager respectively. The proposed method can also be applied to thermal analysis in various kinds of semiconductor integrated circuits.
基金supported by Natural Science Foundation of Guangdong Provincial of China (No.7005833)
文摘The binary decision diagrams (BDDs) can give canonical representation to Boolean functions; they have wide applications in the design and verification of digital systems. A new method based on cultural algorithms for minimizing the size of BDDs is presented in this paper. First of all, the coding of an individual representing a BDDs is given, and the fitness of an individual is defined. The population is built by a set of the individuals. Second, the implementations based on cultural algorithms for the minimization of BDDs, i.e., the designs of belief space and population space, and the designs of acceptance function and influence function, are given in detail. Third, the fault detection approaches using BDDs for digital circuits are studied. A new method for the detection of crosstalk faults by using BDDs is presented. Experimental results on a number of digital circuits show that the BDDs with small number of nodes can be obtained by the method proposed in this paper, and all test vectors of a fault in digital circuits can also be produced.
基金National Natural Science Foundation of China(No.61371024)Aviation Science Fund of China(No.2013ZD53051)+2 种基金Aerospace Technology Support Fund of Chinathe Industry-Academy-Research Project of AVIC,China(No.cxy2013XGD14)the Open Research Project of Guangdong Key Laboratory of Popular High Performance Computers/Shenzhen Key Laboratory of Service Computing and Applications,China
文摘Electronic components' reliability has become the key of the complex system mission execution. Analog circuit is an important part of electronic components. Its fault diagnosis is far more challenging than that of digital circuit. Simulations and applications have shown that the methods based on BP neural network are effective in analog circuit fault diagnosis. Aiming at the tolerance of analog circuit,a combinatorial optimization diagnosis scheme was proposed with back propagation( BP) neural network( BPNN).The main contributions of this scheme included two parts:( 1) the random tolerance samples were added into the nominal training samples to establish new training samples,which were used to train the BP neural network based diagnosis model;( 2) the initial weights of the BP neural network were optimized by genetic algorithm( GA) to avoid local minima,and the BP neural network was tuned with Levenberg-Marquardt algorithm( LMA) in the local solution space to look for the optimum solution or approximate optimal solutions. The experimental results show preliminarily that the scheme substantially improves the whole learning process approximation and generalization ability,and effectively promotes analog circuit fault diagnosis performance based on BPNN.
文摘A radial basis function network(RBF)has excellent generalization ability and approximation accuracy when its parameters are set appropriately.However,when relying only on traditional methods,it is difficult to obtain optimal network parameters and construct a stable model as well.In view of this,a novel radial basis neural network(RBF-MLP)is proposed in this article.By connecting two networks to work cooperatively,the RBF’s parameters can be adjusted adaptively by the structure of the multi-layer perceptron(MLP)to realize the effect of the backpropagation updating error.Furthermore,a genetic algorithm is used to optimize the network’s hidden layer to confirm the optimal neurons(basis function)number automatically.In addition,a memristive circuit model is proposed to realize the neural network’s operation based on the characteristics of spin memristors.It is verified that the network can adaptively construct a network model with outstanding robustness and can stably achieve 98.33%accuracy in the processing of the Modified National Institute of Standards and Technology(MNIST)dataset classification task.The experimental results show that the method has considerable application value.
基金Pre-research Projects Fund of the National Ar ming Department,the 11th Five-year Projects
文摘One kind of steepest descent incremental projection learning algorithm for improving the training of radial basis function(RBF)neural network is proposed,which is applied to analog circuit fault isolation.This algorithm simplified the structure of network through optimum output layer coefficient with incremental projection learning(IPL)algorithm,and adjusted the parameters of the neural activation function to control the network scale and improve the network approximation ability.Compared to the traditional algorithm,the improved algorithm has quicker convergence rate and higher isolation precision.Simulation results show that this improved RBF network has much better performance,which can be used in analog circuit fault isolation field.