In this study,a common-node DEM-SPH coupling model based on the shared node method is proposed,and a fluid–structure coupling method using the common-node discrete element method-smoothed particle hydrodynamics(DS-SP...In this study,a common-node DEM-SPH coupling model based on the shared node method is proposed,and a fluid–structure coupling method using the common-node discrete element method-smoothed particle hydrodynamics(DS-SPH)method is developed using LS-DYNA software.The DEM and SPH are established on the same node to create common-node DEM-SPH particles,allowing for fluid–structure interactions.Numerical simulations of various scenarios,including water entry of a rigid sphere,dam-break propagation over wet beds,impact on an ice plate floating on water and ice accumulation on offshore structures,are conducted.The interaction between DS particles and SPH fluid and the crack generation mechanism and expansion characteristics of the ice plate under the interaction of structure and fluid are also studied.The results are compared with available data to verify the proposed coupling method.Notably,the simulation results demonstrated that controlling the cutoff pressure of internal SPH particles could effectively control particle splashing during ice crushing failure.展开更多
Residual strength is an indispensable factor in evaluating rock fracture,yet the current Smoothed Particle Hydrodynamics(SPH)framework rarely considers its influence when simulating fracture.An improved cracking strat...Residual strength is an indispensable factor in evaluating rock fracture,yet the current Smoothed Particle Hydrodynamics(SPH)framework rarely considers its influence when simulating fracture.An improved cracking strategy considering residual stress in the base bond SPH method was proposed to simulate failures in layered rocks and slopes and verified by experimental results and other simulation methods(i.e.,the discrete element method).Modified Mohr–Coulomb failure criterion was applied to distinguish the mixed failure of tensile and shear.Bond fracture markψwas introduced to improve the kernel function after tensile damage,and the calculation of residual stress after the damage was derived after shear damage.Numerical simulations were carried out to evaluate its performance under different stress and scale conditions and to verify its effectiveness in realistically reproducing crack initiation and propagation and coalescence,even fracture and separation.The results indicate that the improved cracking strategy precisely captures the fracture and failure pattern in layered rocks and rock slopes.The residual stress of brittle tock is correctly captured by the improved SPH method.The improved SPH method that considers residual strength shows an approximately 13%improvement in accuracy for the safety factor of anti-dip layered slopes compared to the method that does not consider residual strength,as validated against analytical solutions.We infer that the improved SPH method is effective and shows promise for applications to continuous and discontinuous rock masses.展开更多
The proposed robust reversible watermarking algorithm addresses the compatibility challenges between robustness and reversibility in existing video watermarking techniques by leveraging scene smoothness for frame grou...The proposed robust reversible watermarking algorithm addresses the compatibility challenges between robustness and reversibility in existing video watermarking techniques by leveraging scene smoothness for frame grouping videos.Grounded in the H.264 video coding standard,the algorithm first employs traditional robust watermark stitching technology to embed watermark information in the low-frequency coefficient domain of the U channel.Subsequently,it utilizes histogram migration techniques in the high-frequency coefficient domain of the U channel to embed auxiliary information,enabling successful watermark extraction and lossless recovery of the original video content.Experimental results demonstrate the algorithm’s strong imperceptibility,with each embedded frame in the experimental videos achieving a mean peak signal-to-noise ratio of 49.3830 dB and a mean structural similarity of 0.9996.Compared with the three comparison algorithms,the performance of the two experimental indexes is improved by 7.59%and 0.4%on average.At the same time,the proposed algorithm has strong robustness to both offline and online attacks:In the face of offline attacks,the average normalized correlation coefficient between the extracted watermark and the original watermark is 0.9989,and the average bit error rate is 0.0089.In the face of online attacks,the normalized correlation coefficient between the extracted watermark and the original watermark is 0.8840,and the mean bit error rate is 0.2269.Compared with the three comparison algorithms,the performance of the two experimental indexes is improved by 1.27%and 18.16%on average,highlighting the algorithm’s robustness.Furthermore,the algorithm exhibits low computational complexity,with the mean encoding and the mean decoding time differentials during experimental video processing being 3.934 and 2.273 s,respectively,underscoring its practical utility.展开更多
Predicting the response of liquefied natural gas(LNG)contained in vessels subjected to external waves is extremely important to ensure the safety of the transportation process.In this study,the coupled behavior due to...Predicting the response of liquefied natural gas(LNG)contained in vessels subjected to external waves is extremely important to ensure the safety of the transportation process.In this study,the coupled behavior due to ship motion and liquid tank sloshing has been simulated by the Smoothed-Particle Hydrodynamics(SPH)method.Firstly,the sloshing flow in a rectangular tank was simulated and the related loads were analyzed to verify and validate the accuracy of the present SPH solver.Then,a three-dimensional simplified LNG carrier model,including two prismatic liquid tanks and a wave tank,was introduced.Different conditions were examined corresponding to different wave lengths,wave heights,wave heading angles,and tank loading rates.Finally,the effects of liquid tank loading rate on LNG ship motions and sloshing loading were analyzed,thereby showing that the SPH method can effectively provide useful indications for the design of liquid cargo ships.展开更多
Angiotensin II (Ang II) is the main mediator of the Renin-Angiotensin-System acting on AT<sub>1</sub> and other AT receptors. It is regarded as a pleiotropic agent that induces many actions, including func...Angiotensin II (Ang II) is the main mediator of the Renin-Angiotensin-System acting on AT<sub>1</sub> and other AT receptors. It is regarded as a pleiotropic agent that induces many actions, including functioning as a growth factor, and as a contractile hormone, among others. The aim of this work was to examine the impact of Ang II on the expression and function of α<sub>1</sub>-adrenergic receptors (α<sub>1</sub>-ARs) in cultured rat aorta, and aorta-derived smooth muscle cells. Isolated Wistar rat aorta was incubated for 24 h in DMEM at 37˚C, then subjected to isometric tension and to the action of added norepinephrine, in concentration-response curves. Ang II was added (1 × 10<sup>−5</sup> M), and in some experiments, 5-Methylurapidil (α<sub>1A</sub>-AR antagonist), AH11110A (α<sub>1B</sub>-AR antagonist), or BMY-7378 (α<sub>1D</sub>-AR antagonist), were used to identify the α<sub>1</sub>-AR involved in the response. Desensitization of the contractile response to norepinephrine was observed due to incubation time, and by the Ang II action. α<sub>1D</sub>-AR was protected from desensitization by BMY-7378;while RS-100329 and prazosin partially mitigated desensitization. In another set of experiments, isolated aorta-derived smooth muscle cells were exposed to Ang II and α<sub>1</sub>-ARs proteins were evaluated. α<sub>1D</sub>-AR increased at 30 and 60 min post Ang II exposure, the α<sub>1A</sub>-AR diminished from 1 to 4 h, while α<sub>1B</sub>-AR remained unchanged over 24 h of Ang II exposure. Ang II induced an increase of α<sub>1D</sub>-AR at short times, and BMY-7378 protected α<sub>1D</sub>-AR from desensitization.展开更多
Viscoelastic flows play an important role in numerous engineering fields,and the multiscale algorithms for simulating viscoelastic flows have received significant attention in order to deepen our understanding of the ...Viscoelastic flows play an important role in numerous engineering fields,and the multiscale algorithms for simulating viscoelastic flows have received significant attention in order to deepen our understanding of the nonlinear dynamic behaviors of viscoelastic fluids.However,traditional grid-based multiscale methods are confined to simple viscoelastic flows with short relaxation time,and there is a lack of uniform multiscale scheme available for coupling different solvers in the simulations of viscoelastic fluids.In this paper,a universal multiscale method coupling an improved smoothed particle hydrodynamics(SPH)and multiscale universal interface(MUI)library is presented for viscoelastic flows.The proposed multiscale method builds on an improved SPH method and leverages the MUI library to facilitate the exchange of information among different solvers in the overlapping domain.We test the capability and flexibility of the presented multiscale method to deal with complex viscoelastic flows by solving different multiscale problems of viscoelastic flows.In the first example,the simulation of a viscoelastic Poiseuille flow is carried out by two coupled improved SPH methods with different spatial resolutions.The effects of exchanging different physical quantities on the numerical results in both the upper and lower domains are also investigated as well as the absolute errors in the overlapping domain.In the second example,the complex Wannier flow with different Weissenberg numbers is further simulated by two improved SPH methods and coupling the improved SPH method and the dissipative particle dynamics(DPD)method.The numerical results show that the physical quantities for viscoelastic flows obtained by the presented multiscale method are in consistence with those obtained by a single solver in the overlapping domain.Moreover,transferring different physical quantities has an important effect on the numerical results.展开更多
Objective Vascular smooth muscle cell(VSMC)differentiation from stem cells is one source of the increasing number of VSMCs that are involved in vascular remodeling-related diseases such as hypertension,atherosclerosis...Objective Vascular smooth muscle cell(VSMC)differentiation from stem cells is one source of the increasing number of VSMCs that are involved in vascular remodeling-related diseases such as hypertension,atherosclerosis,and restenosis.MicroRNA-146a(miR-146a)has been proven to be involved in cell proliferation,migration,and tumor metabolism.However,little is known about the functional role of miR-146a in VSMC differentiation from embryonic stem cells(ESCs).This study aimed to determine the role of miR-146a in VSMC differentiation from ESCs.Methods Mouse ESCs were differentiated into VSMCs,and the cell extracts were analyzed by Western blotting and RT-qPCR.In addition,luciferase reporter assays using ESCs transfected with miR-146a/mimic and plasmids were performed.Finally,C57BL/6J female mice were injected with mimic or miR-146a-overexpressing ESCs,and immunohistochemistry,Western blotting,and RT-qPCR assays were carried out on tissue samples from these mice.Results miR-146a was significantly upregulated during VSMC differentiation,accompanied with the VSMC-specific marker genes smooth muscle-alpha-actin(SMαA),smooth muscle 22(SM22),smooth muscle myosin heavy chain(SMMHC),and h1-calponin.Furthermore,overexpression of miR-146a enhanced the differentiation process in vitro and in vivo.Concurrently,the expression of Kruppel-like factor 4(KLF4),predicted as one of the top targets of miR-146a,was sharply decreased in miR-146a-overexpressing ESCs.Importantly,inhibiting KLF4 expression enhanced the VSMC-specific gene expression induced by miR-146a overexpression in differentiating ESCs.In addition,miR-146a upregulated the mRNA expression levels and transcriptional activity of VSMC differentiation-related transcription factors,including serum response factor(SRF)and myocyte enhancer factor 2c(MEF-2c).Conclusion Our data support that miR-146a promotes ESC-VSMC differentiation through regulating KLF4 and modulating the transcription factor activity of VSMCs.展开更多
Objective This study aimed to investigate the effects of the peroxisome proliferator-activated receptorδ(PPARδ)agonist GW501516 on the proliferation of pulmonary artery smooth muscle cells(PASMCs)induced by hypoxia,...Objective This study aimed to investigate the effects of the peroxisome proliferator-activated receptorδ(PPARδ)agonist GW501516 on the proliferation of pulmonary artery smooth muscle cells(PASMCs)induced by hypoxia,in order to search for new drugs for the treatment and prevention of pulmonary vascular remodeling.Methods PASMCs were incubated with different concentrations of GW501516(10,30,100 nmol/L)under the hypoxic condition.The proliferation was determined by a CCK-8 assay.The cell cycle progression was analyzed by flow cytometry.The expression of PPARδ,S phase kinase-associated protein 2(Skp2),and cell cycle-dependent kinase inhibitor p27 was detected by Western blotting.Then PASMCs were treated with 100 nmol/L GW501516,100 nmol/L mammalian target of rapamycin(mTOR)inhibitor rapamycin and/or 2µmol/L mTOR activator MHY1485 to explore the molecular mechanisms by which GW501516 reduces the proliferation of PASMCs.Results The presented data demonstrated that hypoxia reduced the expression of PPARδin an oxygen concentration-and time-dependent manner,and GW501516 decreased the proliferation of PASMCs induced by hypoxia by blocking the progression through the G0/G1 to S phase of the cell cycle.In accordance with these findings,GW501516 downregulated Skp2 and upregulated p27 in hypoxia-exposed PASMCs.Further experiments showed that rapamycin had similar effects as GW501516 in inhibiting cell proliferation,arresting the cell cycle,regulating the expression of Skp2 and p27,and inactivating mTOR in hypoxia-exposed PASMCs.Moreover,MHY1485 reversed all the beneficial effects of GW501516 on hypoxia-stimulated PASMCs.Conclusion GW501516 inhibited the proliferation of PASMCs induced by hypoxia through blocking the mTOR/Skp2/p27 signaling pathway.展开更多
In classical smoothed particle hydrodynamics(SPH)fluid simulation approaches,the smoothing length of Lagrangian particles is typically constant.One major disadvantage is the lack of adaptiveness,which may compromise a...In classical smoothed particle hydrodynamics(SPH)fluid simulation approaches,the smoothing length of Lagrangian particles is typically constant.One major disadvantage is the lack of adaptiveness,which may compromise accuracy in fluid regions such as splashes and surfaces.Attempts to address this problem used variable smoothing lengths.Yet the existing methods are computationally complex and non-efficient,because the smoothing length is typically calculated using iterative optimization.Here,we propose an efficient non-iterative SPH fluid simulation method with variable smoothing length(VSLSPH).VSLSPH correlates the smoothing length to the density change,and adaptively adjusts the smoothing length of particles with high accuracy and low computational cost,enabling large time steps.Our experimental results demonstrate the advantages of the VSLSPH approach in terms of its simulation accuracy and efficiency.展开更多
In this work,we study the linearized Landau equation with soft potentials and show that the smooth solution to the Cauchy problem with initial datum in L^(2)(ℝ^(3))enjoys an analytic regularization effect,and that the...In this work,we study the linearized Landau equation with soft potentials and show that the smooth solution to the Cauchy problem with initial datum in L^(2)(ℝ^(3))enjoys an analytic regularization effect,and that the evolution of the analytic radius is the same as the heat equations.展开更多
Flow-type landslide is one type of landslide that generally exhibits characteristics of high flow velocities,long jump distances,and poor predictability.Simulation of its propagation process can provide solutions for ...Flow-type landslide is one type of landslide that generally exhibits characteristics of high flow velocities,long jump distances,and poor predictability.Simulation of its propagation process can provide solutions for risk assessment and mitigation design.The smoothed particle hydrodynamics(SPH)method has been successfully applied to the simulation of two-dimensional(2D)and three-dimensional(3D)flow-like landslides.However,the influence of boundary resistance on the whole process of landslide failure is rarely discussed.In this study,a boundary condition considering friction is proposed and integrated into the SPH method,and its accuracy is verified.Moreover,the Navier-Stokes equation combined with the non-Newtonian fluid rheologymodel was utilized to solve the dynamic behavior of the flow-like landslide.To verify its performance,the Shuicheng landslide event,which occurred in Guizhou,China,was taken as a case study.In the 2D simulation,a sensitivity analysis was conducted,and the results showed that the shearing strength parameters have more influence on the computation accuracy than the coefficient of viscosity.Afterwards,the dynamic characteristics of the landslide,such as the velocity and the impact area,were analyzed in the 3D simulation.The simulation results are in good agreement with the field investigations.The simulation results demonstrate that the SPH method performs well in reproducing the landslide process,and facilitates the analysis of landslide characteristics as well as the affected areas,which provides a scientific basis for conducting the risk assessment and disaster mitigation design.展开更多
Let M be a smooth manifold and S ⊆ M a properly embedded smooth submanifold. Suppose that we have a fibre metric on TM|<sub>s</sub> i.e. a positive definite real inner-product on T<sub>p</sub>M...Let M be a smooth manifold and S ⊆ M a properly embedded smooth submanifold. Suppose that we have a fibre metric on TM|<sub>s</sub> i.e. a positive definite real inner-product on T<sub>p</sub>M for all p ∈ S, which depends smoothly on p ∈ S. The purpose of this article is to figure out that the fibre metric on TM|s</sub> can always be extended to a Riemannian metric on TM from a special perspective.展开更多
BACKGROUND Computed tomography(CT)technology has been gradually used in the differen-tiation of small mesenchymal tumors of the stomach and intestines from smooth muscle tumours.AIM To explore the value of enhanced CT...BACKGROUND Computed tomography(CT)technology has been gradually used in the differen-tiation of small mesenchymal tumors of the stomach and intestines from smooth muscle tumours.AIM To explore the value of enhanced CT in the differentiation of small mesenchymal tumors of the stomach and intestines from smooth muscle tumours.METHODS Clinical data of patients with gastric mesenchymal or gastric smooth muscle tu-mours who were treated in our hospital from May 2018 to April 2023 were retrospectively analysed.Patients were divided into the gastric mesenchymal tumor group and the gastric smooth muscle tumor group respectively(n=50 cases per group).Clinical data of 50 healthy volunteers who received physical examinations in our hospital during the same period were selected and included in the control group.Serum levels of carcinoembryonic antigen(CEA),alpha-fetoprotein(AFP),carbohydrate antigen 19-9(CA19-9),CA-125 and cytokeratin 19 fragment antigen 21-1 were compared among the three groups.The value of CEA and CA19-9 in the identification of gastric mesenchymal tumours was analysed using the receiver operating characteristic(ROC)curve.The Kappa statistic was used to analyse the consistency of the combined CEA and CA19-9 test in identi-fying gastric mesenchymal tumours.RESULTS CEA levels varied among the three groups in the following order:The gastric mesenchymal tumour group>the control group>the gastric smooth muscle tumour group.CA19-9 levels varied among the three groups in the following order:The gastric mesenchymal group>the gastric smooth muscle group>the control group,the difference was statistically significant(P<0.05).ROC analysis showed that the area under the curve of CEA and CA19-9 was 0.879 and 0.782,respectively.CONCLUSION Enhanced CT has shown value in differentiating small mesenchymal tumors of the stomach and intestines from smooth muscle tumors.展开更多
Background:Vascular smooth muscle cells(VSMCs)undergo a conversion from a contractile phenotype to a proliferative synthetic phenotype,contributing to the pathogenesis of cardiovascular diseases.Semaphorin 7A(SEMA7A)i...Background:Vascular smooth muscle cells(VSMCs)undergo a conversion from a contractile phenotype to a proliferative synthetic phenotype,contributing to the pathogenesis of cardiovascular diseases.Semaphorin 7A(SEMA7A)is a glycosylphosphatidylinositol-anchored membrane protein that plays an important role in vascular homeostasis by regulating endothelial cell behaviors.However,the expression and role of SEMA7A in VSMCs remain unclear.Methods:In this study,we screened for VSMC-regulating genes in publicly available datasets and analyzed the expression of SEMA7A in human coronary artery smooth muscle cells(hCASMCs)treated with platelet-derived growth factor-BB(PDGF-BB).The effects of SEMA7A overexpression and knockdown on hCASMC proliferation and migration were examined.The signaling pathways involved in the action of SEMA7A in hCASMCs were determined.Results:Bioinformatic analysis showed that SEMA7A was significantly dysregulated in VSMCs treated with oxidized low-density lipoprotein or overexpressing progerin,a pro-atherogenic gene.The PDGF-BB stimulation led to a concentration-and time-dependent induction of SEMA7A.Depletion of SEMA7A attenuated PDGF-BB-induced hCASMC proliferation and migration.Conversely,overexpression of SEMA7A enhanced hCASMC proliferation and migration.Mechanistically,SEMA7A stimulated the activation of theβ-catenin pathway and upregulated c-Myc,CCND1,and MMP7.Knockdown ofβ-catenin impaired SEMA7A-induced hCASMC proliferation and migration.Conclusions:SEMA7A triggers phenotype switching in VSMCs through theβ-catenin signaling pathway and may serve as a potential therapeutic target for cardiovascular diseases.展开更多
Lateral interaction in the biological brain is a key mechanism that underlies higher cognitive functions.Linear self‐organising map(SOM)introduces lateral interaction in a general form in which signals of any modalit...Lateral interaction in the biological brain is a key mechanism that underlies higher cognitive functions.Linear self‐organising map(SOM)introduces lateral interaction in a general form in which signals of any modality can be used.Some approaches directly incorporate SOM learning rules into neural networks,but incur complex operations and poor extendibility.The efficient way to implement lateral interaction in deep neural networks is not well established.The use of Laplacian Matrix‐based Smoothing(LS)regularisation is proposed for implementing lateral interaction in a concise form.The authors’derivation and experiments show that lateral interaction implemented by SOM model is a special case of LS‐regulated k‐means,and they both show the topology‐preserving capability.The authors also verify that LS‐regularisation can be used in conjunction with the end‐to‐end training paradigm in deep auto‐encoders.Additionally,the benefits of LS‐regularisation in relaxing the requirement of parameter initialisation in various models and improving the classification performance of prototype classifiers are evaluated.Furthermore,the topologically ordered structure introduced by LS‐regularisation in feature extractor can improve the generalisation performance on classification tasks.Overall,LS‐regularisation is an effective and efficient way to implement lateral interaction and can be easily extended to different models.展开更多
This paper discusses the two-block large-scale nonconvex optimization problem with general linear constraints.Based on the ideas of splitting and sequential quadratic optimization(SQO),a new feasible descent method fo...This paper discusses the two-block large-scale nonconvex optimization problem with general linear constraints.Based on the ideas of splitting and sequential quadratic optimization(SQO),a new feasible descent method for the discussed problem is proposed.First,we consider the problem of quadratic optimal(QO)approximation associated with the current feasible iteration point,and we split the QO into two small-scale QOs which can be solved in parallel.Second,a feasible descent direction for the problem is obtained and a new SQO-type method is proposed,namely,splitting feasible SQO(SF-SQO)method.Moreover,under suitable conditions,we analyse the global convergence,strong convergence and rate of superlinear convergence of the SF-SQO method.Finally,preliminary numerical experiments regarding the economic dispatch of a power system are carried out,and these show that the SF-SQO method is promising.展开更多
A smooth bidirectional evolutionary structural optimization(SBESO),as a bidirectional version of SESO is proposed to solve the topological optimization of vibrating continuum structures for natural frequencies and dyn...A smooth bidirectional evolutionary structural optimization(SBESO),as a bidirectional version of SESO is proposed to solve the topological optimization of vibrating continuum structures for natural frequencies and dynamic compliance under the transient load.A weighted function is introduced to regulate the mass and stiffness matrix of an element,which has the inefficient element gradually removed from the design domain as if it were undergoing damage.Aiming at maximizing the natural frequency of a structure,the frequency optimization formulation is proposed using the SBESO technique.The effects of various weight functions including constant,linear and sine functions on structural optimization are compared.With the equivalent static load(ESL)method,the dynamic stiffness optimization of a structure is formulated by the SBESO technique.Numerical examples show that compared with the classic BESO method,the SBESO method can efficiently suppress the excessive element deletion by adjusting the element deletion rate and weight function.It is also found that the proposed SBESO technique can obtain an efficient configuration and smooth boundary and demonstrate the advantages over the classic BESO technique.展开更多
With the clinical development and application of intracytoplasmic sperm injection(ICSI)technology in human assisted reproduction,the influence of oocyte quality on embryo development has been paid more and more attent...With the clinical development and application of intracytoplasmic sperm injection(ICSI)technology in human assisted reproduction,the influence of oocyte quality on embryo development has been paid more and more attention.So far,there have been many reports on oocyte morphology affecting embryo development.It has been found in some works that the appearance of smooth endoplasmic reticulum clusters(SERC)in oocytes may affect the fertilization and embryo development of oocytes.However,with the increasing reports of SERC-containing oocytes obtained by in vitro fertilization and healthy offspring in recent years,there is still some controversy on whether to continue to use SERC-containing oocytes for the following assisted reproductive therapy in clinical practice.Based on this,this review aims to review the research progress of SERC in oocytes in recent years.展开更多
Background:Pulmonary arterial hypertension(PAH)is a chronic and progressive disease that is strongly associated with dysregulation of glucose metabolism.Alterations in nuclear receptor subfamily 4 group A member 1(NR4...Background:Pulmonary arterial hypertension(PAH)is a chronic and progressive disease that is strongly associated with dysregulation of glucose metabolism.Alterations in nuclear receptor subfamily 4 group A member 1(NR4A1)activity alter the outcome of PAH.This study aimed to investigate the effects of NR4A1 on glycolysis in PAH and its underlying mechanisms.Methods:This study included twenty healthy volunteers and twenty-three PAH patients,and plasma samples were collected from the participants.To mimic the conditions of PAH in vitro,a hypoxia-induced model of pulmonary artery smooth muscle cell(PASMC)model was established.The proliferation of PASMCs was assessed using CCK8 assays.Results:Levels of NR4A1,hypoxia-inducible factor-1α(HIF-1α),and various glycolysis-related enzymes were measured.In addition,extracellular glucose and lactate production were assessed.The interaction between NR4A1 and HIF-1αwas evaluated by co-immunoprecipitation assays.Levels of NR4A1 and HIF-1αwas increased in PAH patients,and exposure to hypoxia resulted in increased levels of NR4A1 and HIF-1αin PASMCs.NR4A1 interacted with HIF-1α.NR4A1 overexpression enhanced hypoxia-induced expression of HIF-1α,GLUT1,PKM2,HK2,and CD36,decreased glucose levels,increased lactate levels and promoted hypoxic PASMC viability.Conversely,silencing NR4A1 decreased hypoxia-induced expression of HIF-1α,GLUT1,PKM2,HK2,and CD36,promoted glucose production,reduced lactate levels and inhibited hypoxic PASMC viability.Furthermore,overexpression of HIF-1αreversed the regulation of glycolysis caused by NR4A1 knockdown.Conclusion:NR4A1 enhances glycolysis in hypoxia-induced PASMCs by upregulating HIF-1α.Our findings indicate that the management of NR4A1 activity may be a promising strategy for PAH therapy.展开更多
k-means is a popular clustering algorithm because of its simplicity and scalability to handle large datasets.However,one of its setbacks is the challenge of identifying the correct k-hyperparameter value.Tuning this v...k-means is a popular clustering algorithm because of its simplicity and scalability to handle large datasets.However,one of its setbacks is the challenge of identifying the correct k-hyperparameter value.Tuning this value correctly is critical for building effective k-means models.The use of the traditional elbow method to help identify this value has a long-standing literature.However,when using this method with certain datasets,smooth curves may appear,making it challenging to identify the k-value due to its unclear nature.On the other hand,various internal validation indexes,which are proposed as a solution to this issue,may be inconsistent.Although various techniques for solving smooth elbow challenges exist,k-hyperparameter tuning in high-dimensional spaces still remains intractable and an open research issue.In this paper,we have first reviewed the existing techniques for solving smooth elbow challenges.The identified research gaps are then utilized in the development of the new technique.The new technique,referred to as the ensemble-based technique of a self-adapting autoencoder and internal validation indexes,is then validated in high-dimensional space clustering.The optimal k-value,tuned by this technique using a voting scheme,is a trade-off between the number of clusters visualized in the autoencoder’s latent space,k-value from the ensemble internal validation index score and one that generates a value of 0 or close to 0 on the derivative f″′(k)(1+f′(k)^(2))−3 f″(k)^(2)f″((k)2f′(k),at the elbow.Experimental results based on the Cochran’s Q test,ANOVA,and McNemar’s score indicate a relatively good performance of the newly developed technique in k-hyperparameter tuning.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.52201323).
文摘In this study,a common-node DEM-SPH coupling model based on the shared node method is proposed,and a fluid–structure coupling method using the common-node discrete element method-smoothed particle hydrodynamics(DS-SPH)method is developed using LS-DYNA software.The DEM and SPH are established on the same node to create common-node DEM-SPH particles,allowing for fluid–structure interactions.Numerical simulations of various scenarios,including water entry of a rigid sphere,dam-break propagation over wet beds,impact on an ice plate floating on water and ice accumulation on offshore structures,are conducted.The interaction between DS particles and SPH fluid and the crack generation mechanism and expansion characteristics of the ice plate under the interaction of structure and fluid are also studied.The results are compared with available data to verify the proposed coupling method.Notably,the simulation results demonstrated that controlling the cutoff pressure of internal SPH particles could effectively control particle splashing during ice crushing failure.
基金funded by the National Key Research and Development Program of China(Grant No.2023YFC3008300,Grant No.2019YFC1509702)the National Natural Science Foundation of China(Grant No.42172296).
文摘Residual strength is an indispensable factor in evaluating rock fracture,yet the current Smoothed Particle Hydrodynamics(SPH)framework rarely considers its influence when simulating fracture.An improved cracking strategy considering residual stress in the base bond SPH method was proposed to simulate failures in layered rocks and slopes and verified by experimental results and other simulation methods(i.e.,the discrete element method).Modified Mohr–Coulomb failure criterion was applied to distinguish the mixed failure of tensile and shear.Bond fracture markψwas introduced to improve the kernel function after tensile damage,and the calculation of residual stress after the damage was derived after shear damage.Numerical simulations were carried out to evaluate its performance under different stress and scale conditions and to verify its effectiveness in realistically reproducing crack initiation and propagation and coalescence,even fracture and separation.The results indicate that the improved cracking strategy precisely captures the fracture and failure pattern in layered rocks and rock slopes.The residual stress of brittle tock is correctly captured by the improved SPH method.The improved SPH method that considers residual strength shows an approximately 13%improvement in accuracy for the safety factor of anti-dip layered slopes compared to the method that does not consider residual strength,as validated against analytical solutions.We infer that the improved SPH method is effective and shows promise for applications to continuous and discontinuous rock masses.
基金supported in part by the National Natural Science Foundation of China under Grants 62202496,62272478the Basic Frontier Innovation Project of Engineering university of People Armed Police under Grants WJY202314,WJY202221.
文摘The proposed robust reversible watermarking algorithm addresses the compatibility challenges between robustness and reversibility in existing video watermarking techniques by leveraging scene smoothness for frame grouping videos.Grounded in the H.264 video coding standard,the algorithm first employs traditional robust watermark stitching technology to embed watermark information in the low-frequency coefficient domain of the U channel.Subsequently,it utilizes histogram migration techniques in the high-frequency coefficient domain of the U channel to embed auxiliary information,enabling successful watermark extraction and lossless recovery of the original video content.Experimental results demonstrate the algorithm’s strong imperceptibility,with each embedded frame in the experimental videos achieving a mean peak signal-to-noise ratio of 49.3830 dB and a mean structural similarity of 0.9996.Compared with the three comparison algorithms,the performance of the two experimental indexes is improved by 7.59%and 0.4%on average.At the same time,the proposed algorithm has strong robustness to both offline and online attacks:In the face of offline attacks,the average normalized correlation coefficient between the extracted watermark and the original watermark is 0.9989,and the average bit error rate is 0.0089.In the face of online attacks,the normalized correlation coefficient between the extracted watermark and the original watermark is 0.8840,and the mean bit error rate is 0.2269.Compared with the three comparison algorithms,the performance of the two experimental indexes is improved by 1.27%and 18.16%on average,highlighting the algorithm’s robustness.Furthermore,the algorithm exhibits low computational complexity,with the mean encoding and the mean decoding time differentials during experimental video processing being 3.934 and 2.273 s,respectively,underscoring its practical utility.
基金the National Natural Science Foundation of China(No.52271316)the Guangdong Basic and Applied Basic Research Foundation(No.2023A1515030262).
文摘Predicting the response of liquefied natural gas(LNG)contained in vessels subjected to external waves is extremely important to ensure the safety of the transportation process.In this study,the coupled behavior due to ship motion and liquid tank sloshing has been simulated by the Smoothed-Particle Hydrodynamics(SPH)method.Firstly,the sloshing flow in a rectangular tank was simulated and the related loads were analyzed to verify and validate the accuracy of the present SPH solver.Then,a three-dimensional simplified LNG carrier model,including two prismatic liquid tanks and a wave tank,was introduced.Different conditions were examined corresponding to different wave lengths,wave heights,wave heading angles,and tank loading rates.Finally,the effects of liquid tank loading rate on LNG ship motions and sloshing loading were analyzed,thereby showing that the SPH method can effectively provide useful indications for the design of liquid cargo ships.
文摘Angiotensin II (Ang II) is the main mediator of the Renin-Angiotensin-System acting on AT<sub>1</sub> and other AT receptors. It is regarded as a pleiotropic agent that induces many actions, including functioning as a growth factor, and as a contractile hormone, among others. The aim of this work was to examine the impact of Ang II on the expression and function of α<sub>1</sub>-adrenergic receptors (α<sub>1</sub>-ARs) in cultured rat aorta, and aorta-derived smooth muscle cells. Isolated Wistar rat aorta was incubated for 24 h in DMEM at 37˚C, then subjected to isometric tension and to the action of added norepinephrine, in concentration-response curves. Ang II was added (1 × 10<sup>−5</sup> M), and in some experiments, 5-Methylurapidil (α<sub>1A</sub>-AR antagonist), AH11110A (α<sub>1B</sub>-AR antagonist), or BMY-7378 (α<sub>1D</sub>-AR antagonist), were used to identify the α<sub>1</sub>-AR involved in the response. Desensitization of the contractile response to norepinephrine was observed due to incubation time, and by the Ang II action. α<sub>1D</sub>-AR was protected from desensitization by BMY-7378;while RS-100329 and prazosin partially mitigated desensitization. In another set of experiments, isolated aorta-derived smooth muscle cells were exposed to Ang II and α<sub>1</sub>-ARs proteins were evaluated. α<sub>1D</sub>-AR increased at 30 and 60 min post Ang II exposure, the α<sub>1A</sub>-AR diminished from 1 to 4 h, while α<sub>1B</sub>-AR remained unchanged over 24 h of Ang II exposure. Ang II induced an increase of α<sub>1D</sub>-AR at short times, and BMY-7378 protected α<sub>1D</sub>-AR from desensitization.
基金Project supported by the National Natural Science Foundation of China(No.52109068)the Water Conservancy Technology Project of Jiangsu Province of China(No.2022060)。
文摘Viscoelastic flows play an important role in numerous engineering fields,and the multiscale algorithms for simulating viscoelastic flows have received significant attention in order to deepen our understanding of the nonlinear dynamic behaviors of viscoelastic fluids.However,traditional grid-based multiscale methods are confined to simple viscoelastic flows with short relaxation time,and there is a lack of uniform multiscale scheme available for coupling different solvers in the simulations of viscoelastic fluids.In this paper,a universal multiscale method coupling an improved smoothed particle hydrodynamics(SPH)and multiscale universal interface(MUI)library is presented for viscoelastic flows.The proposed multiscale method builds on an improved SPH method and leverages the MUI library to facilitate the exchange of information among different solvers in the overlapping domain.We test the capability and flexibility of the presented multiscale method to deal with complex viscoelastic flows by solving different multiscale problems of viscoelastic flows.In the first example,the simulation of a viscoelastic Poiseuille flow is carried out by two coupled improved SPH methods with different spatial resolutions.The effects of exchanging different physical quantities on the numerical results in both the upper and lower domains are also investigated as well as the absolute errors in the overlapping domain.In the second example,the complex Wannier flow with different Weissenberg numbers is further simulated by two improved SPH methods and coupling the improved SPH method and the dissipative particle dynamics(DPD)method.The numerical results show that the physical quantities for viscoelastic flows obtained by the presented multiscale method are in consistence with those obtained by a single solver in the overlapping domain.Moreover,transferring different physical quantities has an important effect on the numerical results.
基金funded by the National Natural Science Foundation of China(No.82070376 and No.81873491)the Natural Science Foundation of Zhejiang Province(No.LY21H020005)+1 种基金the Zhejiang Medical Science and Technology Project(No.2019KY376 and No.2018KY071)a Ningbo Science and Technology Project(No.202002N3173).
文摘Objective Vascular smooth muscle cell(VSMC)differentiation from stem cells is one source of the increasing number of VSMCs that are involved in vascular remodeling-related diseases such as hypertension,atherosclerosis,and restenosis.MicroRNA-146a(miR-146a)has been proven to be involved in cell proliferation,migration,and tumor metabolism.However,little is known about the functional role of miR-146a in VSMC differentiation from embryonic stem cells(ESCs).This study aimed to determine the role of miR-146a in VSMC differentiation from ESCs.Methods Mouse ESCs were differentiated into VSMCs,and the cell extracts were analyzed by Western blotting and RT-qPCR.In addition,luciferase reporter assays using ESCs transfected with miR-146a/mimic and plasmids were performed.Finally,C57BL/6J female mice were injected with mimic or miR-146a-overexpressing ESCs,and immunohistochemistry,Western blotting,and RT-qPCR assays were carried out on tissue samples from these mice.Results miR-146a was significantly upregulated during VSMC differentiation,accompanied with the VSMC-specific marker genes smooth muscle-alpha-actin(SMαA),smooth muscle 22(SM22),smooth muscle myosin heavy chain(SMMHC),and h1-calponin.Furthermore,overexpression of miR-146a enhanced the differentiation process in vitro and in vivo.Concurrently,the expression of Kruppel-like factor 4(KLF4),predicted as one of the top targets of miR-146a,was sharply decreased in miR-146a-overexpressing ESCs.Importantly,inhibiting KLF4 expression enhanced the VSMC-specific gene expression induced by miR-146a overexpression in differentiating ESCs.In addition,miR-146a upregulated the mRNA expression levels and transcriptional activity of VSMC differentiation-related transcription factors,including serum response factor(SRF)and myocyte enhancer factor 2c(MEF-2c).Conclusion Our data support that miR-146a promotes ESC-VSMC differentiation through regulating KLF4 and modulating the transcription factor activity of VSMCs.
基金supported by the National Natural Science Foundation of Hubei Province(No.2018CFC801).
文摘Objective This study aimed to investigate the effects of the peroxisome proliferator-activated receptorδ(PPARδ)agonist GW501516 on the proliferation of pulmonary artery smooth muscle cells(PASMCs)induced by hypoxia,in order to search for new drugs for the treatment and prevention of pulmonary vascular remodeling.Methods PASMCs were incubated with different concentrations of GW501516(10,30,100 nmol/L)under the hypoxic condition.The proliferation was determined by a CCK-8 assay.The cell cycle progression was analyzed by flow cytometry.The expression of PPARδ,S phase kinase-associated protein 2(Skp2),and cell cycle-dependent kinase inhibitor p27 was detected by Western blotting.Then PASMCs were treated with 100 nmol/L GW501516,100 nmol/L mammalian target of rapamycin(mTOR)inhibitor rapamycin and/or 2µmol/L mTOR activator MHY1485 to explore the molecular mechanisms by which GW501516 reduces the proliferation of PASMCs.Results The presented data demonstrated that hypoxia reduced the expression of PPARδin an oxygen concentration-and time-dependent manner,and GW501516 decreased the proliferation of PASMCs induced by hypoxia by blocking the progression through the G0/G1 to S phase of the cell cycle.In accordance with these findings,GW501516 downregulated Skp2 and upregulated p27 in hypoxia-exposed PASMCs.Further experiments showed that rapamycin had similar effects as GW501516 in inhibiting cell proliferation,arresting the cell cycle,regulating the expression of Skp2 and p27,and inactivating mTOR in hypoxia-exposed PASMCs.Moreover,MHY1485 reversed all the beneficial effects of GW501516 on hypoxia-stimulated PASMCs.Conclusion GW501516 inhibited the proliferation of PASMCs induced by hypoxia through blocking the mTOR/Skp2/p27 signaling pathway.
基金the Key Program of National Natural Science Foundation of China,No.62237001National Natural Science Foundation for Excellent Young Scholars,No.6212200101+2 种基金National Natural Science Foundation for General Program,Nos.62176066 and 61976052Guangdong Provincial Science and Technology Innovation Strategy Fund,No.2019B121203012and Guangzhou Science and Technology Plan,No.202007040005.
文摘In classical smoothed particle hydrodynamics(SPH)fluid simulation approaches,the smoothing length of Lagrangian particles is typically constant.One major disadvantage is the lack of adaptiveness,which may compromise accuracy in fluid regions such as splashes and surfaces.Attempts to address this problem used variable smoothing lengths.Yet the existing methods are computationally complex and non-efficient,because the smoothing length is typically calculated using iterative optimization.Here,we propose an efficient non-iterative SPH fluid simulation method with variable smoothing length(VSLSPH).VSLSPH correlates the smoothing length to the density change,and adaptively adjusts the smoothing length of particles with high accuracy and low computational cost,enabling large time steps.Our experimental results demonstrate the advantages of the VSLSPH approach in terms of its simulation accuracy and efficiency.
基金supported by the Natural Science Foundation of Hubei Province,China (2022CFB444)the Key Laboratory of Mathematical Modelling and High Performance Computing of Air Vehicles (NUAA)+1 种基金supported by the NSFC (12031006)the Fundamental Research Funds for the Central Universities of China.
文摘In this work,we study the linearized Landau equation with soft potentials and show that the smooth solution to the Cauchy problem with initial datum in L^(2)(ℝ^(3))enjoys an analytic regularization effect,and that the evolution of the analytic radius is the same as the heat equations.
文摘Flow-type landslide is one type of landslide that generally exhibits characteristics of high flow velocities,long jump distances,and poor predictability.Simulation of its propagation process can provide solutions for risk assessment and mitigation design.The smoothed particle hydrodynamics(SPH)method has been successfully applied to the simulation of two-dimensional(2D)and three-dimensional(3D)flow-like landslides.However,the influence of boundary resistance on the whole process of landslide failure is rarely discussed.In this study,a boundary condition considering friction is proposed and integrated into the SPH method,and its accuracy is verified.Moreover,the Navier-Stokes equation combined with the non-Newtonian fluid rheologymodel was utilized to solve the dynamic behavior of the flow-like landslide.To verify its performance,the Shuicheng landslide event,which occurred in Guizhou,China,was taken as a case study.In the 2D simulation,a sensitivity analysis was conducted,and the results showed that the shearing strength parameters have more influence on the computation accuracy than the coefficient of viscosity.Afterwards,the dynamic characteristics of the landslide,such as the velocity and the impact area,were analyzed in the 3D simulation.The simulation results are in good agreement with the field investigations.The simulation results demonstrate that the SPH method performs well in reproducing the landslide process,and facilitates the analysis of landslide characteristics as well as the affected areas,which provides a scientific basis for conducting the risk assessment and disaster mitigation design.
文摘Let M be a smooth manifold and S ⊆ M a properly embedded smooth submanifold. Suppose that we have a fibre metric on TM|<sub>s</sub> i.e. a positive definite real inner-product on T<sub>p</sub>M for all p ∈ S, which depends smoothly on p ∈ S. The purpose of this article is to figure out that the fibre metric on TM|s</sub> can always be extended to a Riemannian metric on TM from a special perspective.
文摘BACKGROUND Computed tomography(CT)technology has been gradually used in the differen-tiation of small mesenchymal tumors of the stomach and intestines from smooth muscle tumours.AIM To explore the value of enhanced CT in the differentiation of small mesenchymal tumors of the stomach and intestines from smooth muscle tumours.METHODS Clinical data of patients with gastric mesenchymal or gastric smooth muscle tu-mours who were treated in our hospital from May 2018 to April 2023 were retrospectively analysed.Patients were divided into the gastric mesenchymal tumor group and the gastric smooth muscle tumor group respectively(n=50 cases per group).Clinical data of 50 healthy volunteers who received physical examinations in our hospital during the same period were selected and included in the control group.Serum levels of carcinoembryonic antigen(CEA),alpha-fetoprotein(AFP),carbohydrate antigen 19-9(CA19-9),CA-125 and cytokeratin 19 fragment antigen 21-1 were compared among the three groups.The value of CEA and CA19-9 in the identification of gastric mesenchymal tumours was analysed using the receiver operating characteristic(ROC)curve.The Kappa statistic was used to analyse the consistency of the combined CEA and CA19-9 test in identi-fying gastric mesenchymal tumours.RESULTS CEA levels varied among the three groups in the following order:The gastric mesenchymal tumour group>the control group>the gastric smooth muscle tumour group.CA19-9 levels varied among the three groups in the following order:The gastric mesenchymal group>the gastric smooth muscle group>the control group,the difference was statistically significant(P<0.05).ROC analysis showed that the area under the curve of CEA and CA19-9 was 0.879 and 0.782,respectively.CONCLUSION Enhanced CT has shown value in differentiating small mesenchymal tumors of the stomach and intestines from smooth muscle tumors.
基金supported by the Basic Research Program of Shanxi Province(Free Exploration)of China(20210302124416)Science and Technology Grant for Selected Returned Chinese Scholars of Shanxi Province of China(20220043)Four“Batches”Innovation Project of Invigorating Medical through Science and Technology of Shanxi Province of China(2022XM08).
文摘Background:Vascular smooth muscle cells(VSMCs)undergo a conversion from a contractile phenotype to a proliferative synthetic phenotype,contributing to the pathogenesis of cardiovascular diseases.Semaphorin 7A(SEMA7A)is a glycosylphosphatidylinositol-anchored membrane protein that plays an important role in vascular homeostasis by regulating endothelial cell behaviors.However,the expression and role of SEMA7A in VSMCs remain unclear.Methods:In this study,we screened for VSMC-regulating genes in publicly available datasets and analyzed the expression of SEMA7A in human coronary artery smooth muscle cells(hCASMCs)treated with platelet-derived growth factor-BB(PDGF-BB).The effects of SEMA7A overexpression and knockdown on hCASMC proliferation and migration were examined.The signaling pathways involved in the action of SEMA7A in hCASMCs were determined.Results:Bioinformatic analysis showed that SEMA7A was significantly dysregulated in VSMCs treated with oxidized low-density lipoprotein or overexpressing progerin,a pro-atherogenic gene.The PDGF-BB stimulation led to a concentration-and time-dependent induction of SEMA7A.Depletion of SEMA7A attenuated PDGF-BB-induced hCASMC proliferation and migration.Conversely,overexpression of SEMA7A enhanced hCASMC proliferation and migration.Mechanistically,SEMA7A stimulated the activation of theβ-catenin pathway and upregulated c-Myc,CCND1,and MMP7.Knockdown ofβ-catenin impaired SEMA7A-induced hCASMC proliferation and migration.Conclusions:SEMA7A triggers phenotype switching in VSMCs through theβ-catenin signaling pathway and may serve as a potential therapeutic target for cardiovascular diseases.
基金supported by the National Natural Science Foundation of China grants 61836014 to CL,and the STI2030‐Major Projects(2022ZD0205100)the Strategic Priority Research Program of Chinese Academy of Science,Grant No.XDB32010300+1 种基金Shanghai Municipal Science and Technology Major Project(Grant No.2018SHZDZX05)the Innovation Academy of Artificial Intelligence,Chinese Academy of Sciences to ZW.
文摘Lateral interaction in the biological brain is a key mechanism that underlies higher cognitive functions.Linear self‐organising map(SOM)introduces lateral interaction in a general form in which signals of any modality can be used.Some approaches directly incorporate SOM learning rules into neural networks,but incur complex operations and poor extendibility.The efficient way to implement lateral interaction in deep neural networks is not well established.The use of Laplacian Matrix‐based Smoothing(LS)regularisation is proposed for implementing lateral interaction in a concise form.The authors’derivation and experiments show that lateral interaction implemented by SOM model is a special case of LS‐regulated k‐means,and they both show the topology‐preserving capability.The authors also verify that LS‐regularisation can be used in conjunction with the end‐to‐end training paradigm in deep auto‐encoders.Additionally,the benefits of LS‐regularisation in relaxing the requirement of parameter initialisation in various models and improving the classification performance of prototype classifiers are evaluated.Furthermore,the topologically ordered structure introduced by LS‐regularisation in feature extractor can improve the generalisation performance on classification tasks.Overall,LS‐regularisation is an effective and efficient way to implement lateral interaction and can be easily extended to different models.
基金supported by the National Natural Science Foundation of China(12171106)the Natural Science Foundation of Guangxi Province(2020GXNSFDA238017 and 2018GXNSFFA281007)the Shanghai Sailing Program(21YF1430300)。
文摘This paper discusses the two-block large-scale nonconvex optimization problem with general linear constraints.Based on the ideas of splitting and sequential quadratic optimization(SQO),a new feasible descent method for the discussed problem is proposed.First,we consider the problem of quadratic optimal(QO)approximation associated with the current feasible iteration point,and we split the QO into two small-scale QOs which can be solved in parallel.Second,a feasible descent direction for the problem is obtained and a new SQO-type method is proposed,namely,splitting feasible SQO(SF-SQO)method.Moreover,under suitable conditions,we analyse the global convergence,strong convergence and rate of superlinear convergence of the SF-SQO method.Finally,preliminary numerical experiments regarding the economic dispatch of a power system are carried out,and these show that the SF-SQO method is promising.
基金supported by the National Natural Science Foundation of China (Grant No.51505096)the Natural Science Foundation of Heilongjiang Province (Grant No.LH2020E064).
文摘A smooth bidirectional evolutionary structural optimization(SBESO),as a bidirectional version of SESO is proposed to solve the topological optimization of vibrating continuum structures for natural frequencies and dynamic compliance under the transient load.A weighted function is introduced to regulate the mass and stiffness matrix of an element,which has the inefficient element gradually removed from the design domain as if it were undergoing damage.Aiming at maximizing the natural frequency of a structure,the frequency optimization formulation is proposed using the SBESO technique.The effects of various weight functions including constant,linear and sine functions on structural optimization are compared.With the equivalent static load(ESL)method,the dynamic stiffness optimization of a structure is formulated by the SBESO technique.Numerical examples show that compared with the classic BESO method,the SBESO method can efficiently suppress the excessive element deletion by adjusting the element deletion rate and weight function.It is also found that the proposed SBESO technique can obtain an efficient configuration and smooth boundary and demonstrate the advantages over the classic BESO technique.
基金National Natural Science Foundation of China (No.82072880,81960283)Science and Technology Project of Hainan Province (No.LCYX202102)Key Science and Technology Project of Hainan Province (No.ZDKJ2017007)。
文摘With the clinical development and application of intracytoplasmic sperm injection(ICSI)technology in human assisted reproduction,the influence of oocyte quality on embryo development has been paid more and more attention.So far,there have been many reports on oocyte morphology affecting embryo development.It has been found in some works that the appearance of smooth endoplasmic reticulum clusters(SERC)in oocytes may affect the fertilization and embryo development of oocytes.However,with the increasing reports of SERC-containing oocytes obtained by in vitro fertilization and healthy offspring in recent years,there is still some controversy on whether to continue to use SERC-containing oocytes for the following assisted reproductive therapy in clinical practice.Based on this,this review aims to review the research progress of SERC in oocytes in recent years.
基金supported by the National Natural Science Foundation of China(No.82000300).
文摘Background:Pulmonary arterial hypertension(PAH)is a chronic and progressive disease that is strongly associated with dysregulation of glucose metabolism.Alterations in nuclear receptor subfamily 4 group A member 1(NR4A1)activity alter the outcome of PAH.This study aimed to investigate the effects of NR4A1 on glycolysis in PAH and its underlying mechanisms.Methods:This study included twenty healthy volunteers and twenty-three PAH patients,and plasma samples were collected from the participants.To mimic the conditions of PAH in vitro,a hypoxia-induced model of pulmonary artery smooth muscle cell(PASMC)model was established.The proliferation of PASMCs was assessed using CCK8 assays.Results:Levels of NR4A1,hypoxia-inducible factor-1α(HIF-1α),and various glycolysis-related enzymes were measured.In addition,extracellular glucose and lactate production were assessed.The interaction between NR4A1 and HIF-1αwas evaluated by co-immunoprecipitation assays.Levels of NR4A1 and HIF-1αwas increased in PAH patients,and exposure to hypoxia resulted in increased levels of NR4A1 and HIF-1αin PASMCs.NR4A1 interacted with HIF-1α.NR4A1 overexpression enhanced hypoxia-induced expression of HIF-1α,GLUT1,PKM2,HK2,and CD36,decreased glucose levels,increased lactate levels and promoted hypoxic PASMC viability.Conversely,silencing NR4A1 decreased hypoxia-induced expression of HIF-1α,GLUT1,PKM2,HK2,and CD36,promoted glucose production,reduced lactate levels and inhibited hypoxic PASMC viability.Furthermore,overexpression of HIF-1αreversed the regulation of glycolysis caused by NR4A1 knockdown.Conclusion:NR4A1 enhances glycolysis in hypoxia-induced PASMCs by upregulating HIF-1α.Our findings indicate that the management of NR4A1 activity may be a promising strategy for PAH therapy.
文摘k-means is a popular clustering algorithm because of its simplicity and scalability to handle large datasets.However,one of its setbacks is the challenge of identifying the correct k-hyperparameter value.Tuning this value correctly is critical for building effective k-means models.The use of the traditional elbow method to help identify this value has a long-standing literature.However,when using this method with certain datasets,smooth curves may appear,making it challenging to identify the k-value due to its unclear nature.On the other hand,various internal validation indexes,which are proposed as a solution to this issue,may be inconsistent.Although various techniques for solving smooth elbow challenges exist,k-hyperparameter tuning in high-dimensional spaces still remains intractable and an open research issue.In this paper,we have first reviewed the existing techniques for solving smooth elbow challenges.The identified research gaps are then utilized in the development of the new technique.The new technique,referred to as the ensemble-based technique of a self-adapting autoencoder and internal validation indexes,is then validated in high-dimensional space clustering.The optimal k-value,tuned by this technique using a voting scheme,is a trade-off between the number of clusters visualized in the autoencoder’s latent space,k-value from the ensemble internal validation index score and one that generates a value of 0 or close to 0 on the derivative f″′(k)(1+f′(k)^(2))−3 f″(k)^(2)f″((k)2f′(k),at the elbow.Experimental results based on the Cochran’s Q test,ANOVA,and McNemar’s score indicate a relatively good performance of the newly developed technique in k-hyperparameter tuning.