We introduce the notion of K-very smoothness which is a generalization of very smoothness in Banach spaces. A necessary and sufficient condition for a Banach space to be K-very smooth is obtained. We also consider som...We introduce the notion of K-very smoothness which is a generalization of very smoothness in Banach spaces. A necessary and sufficient condition for a Banach space to be K-very smooth is obtained. We also consider some relations between K-very smoothness and other geometrical notions.展开更多
We develop a 3D bounded slice-surface grid (3D-BSSG) structure for representation and introduce the solution space smoothing technique to search for the optimal solution. Experiment results demonstrate that a 3D-BSS...We develop a 3D bounded slice-surface grid (3D-BSSG) structure for representation and introduce the solution space smoothing technique to search for the optimal solution. Experiment results demonstrate that a 3D-BSSG structure based algorithm is very effective and efficient.展开更多
A novel method to estimate DOA of coherent signals impinging on a uniform circular array( UCA) is presented in this paper. A virtual uniform linear array (VULA) is first derived by using spatial DFT technique, transfo...A novel method to estimate DOA of coherent signals impinging on a uniform circular array( UCA) is presented in this paper. A virtual uniform linear array (VULA) is first derived by using spatial DFT technique, transforming the UCA from element space to phase mode space to obtain the properties of ordinary ULA, and then the well known spatial smoothing technique is applied to the VULA so that the lost rank of covariance matrix due to signal coherence can be retrieved. This method makes it feasible to use the simple MUSIC algorithm to estimate DOA of coherent signals impinging on a UCA without heavy computation burden. Simulation results strongly verify the effectiveness of the algorithm.展开更多
In this paper, let K be a nonempty subset of a uniformly smooth Banach space X, and T:K→2~k be a multivalued operator of the monotone type. The iterative sequence which converges strongly to the unique fixed point of...In this paper, let K be a nonempty subset of a uniformly smooth Banach space X, and T:K→2~k be a multivalued operator of the monotone type. The iterative sequence which converges strongly to the unique fixed point of T is given. Our results are the extension and improvements of the results obtained previously by several authors including Dunn, Chidume, Deng and Ding.展开更多
Let h, be a measurable function defined on R^+ ×R^+. Let Ω ∈ L(log L^+)^υq (S^n1-1 × S^n2-1) (1≤ υq ≤ 2) be homogeneous of degree zero and satisfy certain cancellation conditions. We show that...Let h, be a measurable function defined on R^+ ×R^+. Let Ω ∈ L(log L^+)^υq (S^n1-1 × S^n2-1) (1≤ υq ≤ 2) be homogeneous of degree zero and satisfy certain cancellation conditions. We show that the singular integral Tf(x1,x2)=p.v.∫∫R^n1+n2 Ω(y′1,y′2)h(|y1|,|y2|)/|y1|^n1|y2|^n2 f(x1-y1,x2-y2)dy1dy2maps from Sp,q^α1,α2F(R^n1×R^n2)boundedly to itself for 1 〈 p, q 〈 ∞, α1, α2 ∈R.展开更多
In this work, we study the smoothing effect of Cauchy problem in Sobolev space for the spatially homogeneous Landau equation in the Maxwellian case. We obtain a precise estimate with respect to time variable, which im...In this work, we study the smoothing effect of Cauchy problem in Sobolev space for the spatially homogeneous Landau equation in the Maxwellian case. We obtain a precise estimate with respect to time variable, which implies the ultra-analytic effect of weak solutions.展开更多
Let E be a uniformly smooth Banach space, K be a nonempty closed convex subset of E, and suppose: T: K --> K is a continuous Phi-strongly pseudocontractive operator with a bounded range. Using a new analytical meth...Let E be a uniformly smooth Banach space, K be a nonempty closed convex subset of E, and suppose: T: K --> K is a continuous Phi-strongly pseudocontractive operator with a bounded range. Using a new analytical method, under general cases, the Ishikawa iterative process {x(n)} converges strongly to the unique fixed point x* of the operator T were proved. The paper generalizes and extends a lot of recent corresponding results.展开更多
In this paper, we introduce and study a new system of generalized vari- ational inclusions involving H-η-monotone operators in uniformly smooth Banach spaces. Using the resolvent operator technique associated with H-...In this paper, we introduce and study a new system of generalized vari- ational inclusions involving H-η-monotone operators in uniformly smooth Banach spaces. Using the resolvent operator technique associated with H-η-monotone opera- tors, we prove the approximation solvability of solutions using an iterative algorithm. The results in this paper extend and improve some known results from the literature.展开更多
With an inequality and some analysis techniques,iterative approximation of fixed points for uniformly continuous and strongly pseudocontractive mappings in smooth Banach spaces is studied,and the recent corresponding ...With an inequality and some analysis techniques,iterative approximation of fixed points for uniformly continuous and strongly pseudocontractive mappings in smooth Banach spaces is studied,and the recent corresponding results of Chidume are improved.展开更多
For the step-weight function , we prove that the Holder spaces ∧a,p on the interval [-1,1], defined in terms of moduli of smoothness with the step-weight function ,are linearly isomorphic to some sequence spaces, an...For the step-weight function , we prove that the Holder spaces ∧a,p on the interval [-1,1], defined in terms of moduli of smoothness with the step-weight function ,are linearly isomorphic to some sequence spaces, and the isomorphism is given by the cofficients of function with respect to a system of orthonormal splines with knots uniformly distributed according to the measure with density . In case ∧a,p is contained in the space of continuous functions, we give a discrete characterization of this space, using only values of function at the appropriate knots. Application of these results to characterize the order of polynomial approximation is presented.展开更多
It is important to study the propagation and interaction of progressing waves of nonlinear equations in the class of piecewise smooth function. However, there has not been many works on that in multidimensional case. ...It is important to study the propagation and interaction of progressing waves of nonlinear equations in the class of piecewise smooth function. However, there has not been many works on that in multidimensional case. In 1985, J, Rauch & M. Reed have provad the existence and uniqueness of piecewise smooth solution for展开更多
This paper deals with a new class of nonlinear set valued implicit variational inclusion problems involving (A, η)-monotone mappings in 2-uniformly smooth Banach spaces. Semi-inner product structure has been used t...This paper deals with a new class of nonlinear set valued implicit variational inclusion problems involving (A, η)-monotone mappings in 2-uniformly smooth Banach spaces. Semi-inner product structure has been used to study the (A, η)-monotonicity. Using the generalized resolvent operator technique and the semi-inner product structure, the approximation solvability of the proposed problem is investigated. An iterative algorithm is constructed to approximate the solution of the problem. Convergence analysis of the proposed algorithm is investigated. Similar results are also investigated for variational inclusion problems involving (H, η)-monotone mappings.展开更多
The criterion for k-smooth points of the Orlicz sequence space endowed with the Orlicz norm is proved. The necessary and sufficient conditions of k-smoothness of l M and l (M ) are obtained, respectively. Finally, w...The criterion for k-smooth points of the Orlicz sequence space endowed with the Orlicz norm is proved. The necessary and sufficient conditions of k-smoothness of l M and l (M ) are obtained, respectively. Finally, we give the counterexamples which show that previous results are not true.展开更多
Let T1 be a singular integral with non-smooth kernel or ±I, let T2 and T4 be the linear operators and let T3 = ± I. Denote the Toeplitz type operator by Tb = T1M^b Ia T2 + T3IaMbT4,where M^bf = bf, and Ib i...Let T1 be a singular integral with non-smooth kernel or ±I, let T2 and T4 be the linear operators and let T3 = ± I. Denote the Toeplitz type operator by Tb = T1M^b Ia T2 + T3IaMbT4,where M^bf = bf, and Ib is the fractional integral operator. In this paper, we investigate the boundedness of the operator Tb on the weighted Morrey space when b belongs to the weighted BMO space.展开更多
In this paper,we study some dentabilities in Banach spaces which are closely related to the famous Radon-Nikodym property.We introduce the concepts of the weak^(*)-weak denting point and the weak^(*)-weak^(*)denting p...In this paper,we study some dentabilities in Banach spaces which are closely related to the famous Radon-Nikodym property.We introduce the concepts of the weak^(*)-weak denting point and the weak^(*)-weak^(*)denting point of a set.These are the generalizations of the weak^(*)denting point of a set in a dual Banach space.By use of the weak^(*)-weak denting point,we characterize the very smooth space,the point of weak^(*)-weak continuity,and the extreme point of a unit ball in a dual Banach space.Meanwhile,we also characterize an approximatively weak compact Chebyshev set in dual Banach spaces.Moreover,we define the nearly weak dentability in Banach spaces,which is a generalization of near dentability.We prove the necessary and sufficient conditions of the reflexivity by nearly weak dentability.We also obtain that nearly weak dentability is equivalent to both the approximatively weak compactness of Banach spaces and the w-strong proximinality of every closed convex subset of Banach spaces.展开更多
文摘We introduce the notion of K-very smoothness which is a generalization of very smoothness in Banach spaces. A necessary and sufficient condition for a Banach space to be K-very smooth is obtained. We also consider some relations between K-very smoothness and other geometrical notions.
文摘We develop a 3D bounded slice-surface grid (3D-BSSG) structure for representation and introduce the solution space smoothing technique to search for the optimal solution. Experiment results demonstrate that a 3D-BSSG structure based algorithm is very effective and efficient.
文摘A novel method to estimate DOA of coherent signals impinging on a uniform circular array( UCA) is presented in this paper. A virtual uniform linear array (VULA) is first derived by using spatial DFT technique, transforming the UCA from element space to phase mode space to obtain the properties of ordinary ULA, and then the well known spatial smoothing technique is applied to the VULA so that the lost rank of covariance matrix due to signal coherence can be retrieved. This method makes it feasible to use the simple MUSIC algorithm to estimate DOA of coherent signals impinging on a UCA without heavy computation burden. Simulation results strongly verify the effectiveness of the algorithm.
基金The Project supported by the Youth Science Fund of Shanghai Higher Learring and NNSF of P.R.
文摘In this paper, let K be a nonempty subset of a uniformly smooth Banach space X, and T:K→2~k be a multivalued operator of the monotone type. The iterative sequence which converges strongly to the unique fixed point of T is given. Our results are the extension and improvements of the results obtained previously by several authors including Dunn, Chidume, Deng and Ding.
文摘Let h, be a measurable function defined on R^+ ×R^+. Let Ω ∈ L(log L^+)^υq (S^n1-1 × S^n2-1) (1≤ υq ≤ 2) be homogeneous of degree zero and satisfy certain cancellation conditions. We show that the singular integral Tf(x1,x2)=p.v.∫∫R^n1+n2 Ω(y′1,y′2)h(|y1|,|y2|)/|y1|^n1|y2|^n2 f(x1-y1,x2-y2)dy1dy2maps from Sp,q^α1,α2F(R^n1×R^n2)boundedly to itself for 1 〈 p, q 〈 ∞, α1, α2 ∈R.
文摘In this work, we study the smoothing effect of Cauchy problem in Sobolev space for the spatially homogeneous Landau equation in the Maxwellian case. We obtain a precise estimate with respect to time variable, which implies the ultra-analytic effect of weak solutions.
文摘Let E be a uniformly smooth Banach space, K be a nonempty closed convex subset of E, and suppose: T: K --> K is a continuous Phi-strongly pseudocontractive operator with a bounded range. Using a new analytical method, under general cases, the Ishikawa iterative process {x(n)} converges strongly to the unique fixed point x* of the operator T were proved. The paper generalizes and extends a lot of recent corresponding results.
基金The NSF(60804065)of Chinathe Foundation(11A028)of China West Normal University
文摘In this paper, we introduce and study a new system of generalized vari- ational inclusions involving H-η-monotone operators in uniformly smooth Banach spaces. Using the resolvent operator technique associated with H-η-monotone opera- tors, we prove the approximation solvability of solutions using an iterative algorithm. The results in this paper extend and improve some known results from the literature.
文摘With an inequality and some analysis techniques,iterative approximation of fixed points for uniformly continuous and strongly pseudocontractive mappings in smooth Banach spaces is studied,and the recent corresponding results of Chidume are improved.
文摘For the step-weight function , we prove that the Holder spaces ∧a,p on the interval [-1,1], defined in terms of moduli of smoothness with the step-weight function ,are linearly isomorphic to some sequence spaces, and the isomorphism is given by the cofficients of function with respect to a system of orthonormal splines with knots uniformly distributed according to the measure with density . In case ∧a,p is contained in the space of continuous functions, we give a discrete characterization of this space, using only values of function at the appropriate knots. Application of these results to characterize the order of polynomial approximation is presented.
基金This paper is supported by the National Foundations.
文摘It is important to study the propagation and interaction of progressing waves of nonlinear equations in the class of piecewise smooth function. However, there has not been many works on that in multidimensional case. In 1985, J, Rauch & M. Reed have provad the existence and uniqueness of piecewise smooth solution for
文摘This paper deals with a new class of nonlinear set valued implicit variational inclusion problems involving (A, η)-monotone mappings in 2-uniformly smooth Banach spaces. Semi-inner product structure has been used to study the (A, η)-monotonicity. Using the generalized resolvent operator technique and the semi-inner product structure, the approximation solvability of the proposed problem is investigated. An iterative algorithm is constructed to approximate the solution of the problem. Convergence analysis of the proposed algorithm is investigated. Similar results are also investigated for variational inclusion problems involving (H, η)-monotone mappings.
基金Project supported by the National Natural Science Foundation of China (Grant No.10971129)
文摘The criterion for k-smooth points of the Orlicz sequence space endowed with the Orlicz norm is proved. The necessary and sufficient conditions of k-smoothness of l M and l (M ) are obtained, respectively. Finally, we give the counterexamples which show that previous results are not true.
文摘Let T1 be a singular integral with non-smooth kernel or ±I, let T2 and T4 be the linear operators and let T3 = ± I. Denote the Toeplitz type operator by Tb = T1M^b Ia T2 + T3IaMbT4,where M^bf = bf, and Ib is the fractional integral operator. In this paper, we investigate the boundedness of the operator Tb on the weighted Morrey space when b belongs to the weighted BMO space.
基金supported by the National Natural Science Foundation of China(12271344)the Natural Science Foundation of Shanghai(23ZR1425800)。
文摘In this paper,we study some dentabilities in Banach spaces which are closely related to the famous Radon-Nikodym property.We introduce the concepts of the weak^(*)-weak denting point and the weak^(*)-weak^(*)denting point of a set.These are the generalizations of the weak^(*)denting point of a set in a dual Banach space.By use of the weak^(*)-weak denting point,we characterize the very smooth space,the point of weak^(*)-weak continuity,and the extreme point of a unit ball in a dual Banach space.Meanwhile,we also characterize an approximatively weak compact Chebyshev set in dual Banach spaces.Moreover,we define the nearly weak dentability in Banach spaces,which is a generalization of near dentability.We prove the necessary and sufficient conditions of the reflexivity by nearly weak dentability.We also obtain that nearly weak dentability is equivalent to both the approximatively weak compactness of Banach spaces and the w-strong proximinality of every closed convex subset of Banach spaces.