期刊文献+
共找到726篇文章
< 1 2 37 >
每页显示 20 50 100
一类新的逐重量完美平衡布尔函数的构造
1
作者 赵庆兰 李梦苒 +1 位作者 李盼 郑东 《西安邮电大学学报》 2024年第4期67-74,共8页
对逐重量完美平衡(Weightwise Perfectly Balanced,WPB)函数的构造进行研究。给出一类四次函数,分析其k-重量,通过修改四次函数的支撑集完成一类新WPB函数的构造,并对其完美平衡性和代数次数进行证明。利用计算机程序对所构造的小变元WP... 对逐重量完美平衡(Weightwise Perfectly Balanced,WPB)函数的构造进行研究。给出一类四次函数,分析其k-重量,通过修改四次函数的支撑集完成一类新WPB函数的构造,并对其完美平衡性和代数次数进行证明。利用计算机程序对所构造的小变元WPB函数的k-重量非线性度进行计算,结果表明,构造的一类新WPB函数在某些重量k的子集上与现有函数相比有所提高。 展开更多
关键词 布尔函数 FLIP 逐重量完美平衡函数 代数次数 k-重量非线性度
下载PDF
基于K-Means聚类与熵权TOPSIS法的岩石可爆性评价研究
2
作者 叶海旺 雷丙响 +5 位作者 周汉红 余梦豪 雷涛 王其洲 李宁 Doumbouya Sekou 《爆破》 CSCD 北大核心 2024年第2期112-119,共8页
露天矿山的爆破块度分布,直接影响到后续的采装、运输和破碎工作。为了控制石墨矿山不同区域爆破块度分布,基于K-means无监督聚类学习法与熵权TOPSIS评价法建立了一种新的岩石可爆性评价模型,选取岩石密度、动力能量耗散率、动态抗压强... 露天矿山的爆破块度分布,直接影响到后续的采装、运输和破碎工作。为了控制石墨矿山不同区域爆破块度分布,基于K-means无监督聚类学习法与熵权TOPSIS评价法建立了一种新的岩石可爆性评价模型,选取岩石密度、动力能量耗散率、动态抗压强度、平均应变率、脆性指数作为评价指标,通过熵权计算,发现岩石破碎程度受脆性指数影响最大,受平均应变率影响最小。将此模型应用于实际石墨矿山,可爆性分为10个等级,统计不同分级下的岩石平均破碎粒径,发现可爆性分级等级越高平均粒径越大,有明显的分级特征,验证了模型的有效性。从爆破石墨矿石岩体类型看,岩石可爆性从易到难排序为:片岩、片麻岩、变粒岩、混合岩。结合石墨矿石微观观测结果分析可知:岩性从片岩向混合岩转变,岩石内部石墨晶质呈下降趋势,石墨矿石可爆性等级也随之越来越高。岩石密度、能量耗散率、动态抗压强度之间呈线性正相关,岩石可爆性与平均应变率、脆性指数存在负相关性。研究成果为矿山矿岩可爆性评价提供了一条新思路,对露天矿山爆破块度优化具有一定的理论和实践指导意义。 展开更多
关键词 岩体爆破 可爆性评价 岩石力学 K-MEANS算法 熵权TOPSIS评价
下载PDF
基于组合加权k近邻分类的无线传感网络节点复制攻击检测方法
3
作者 赵晓峰 王平水 《传感技术学报》 CAS CSCD 北大核心 2024年第6期1056-1060,共5页
无线传感网络节点体积小,隐蔽性强,节点复制攻击检测的难度较大,为此提出一种基于组合加权k近邻分类的无线传感网络节点复制攻击检测方法。通过信标节点的空间位置数据与相距跳数得出各节点之间的相似程度,结合高斯径向基核函数求解未... 无线传感网络节点体积小,隐蔽性强,节点复制攻击检测的难度较大,为此提出一种基于组合加权k近邻分类的无线传感网络节点复制攻击检测方法。通过信标节点的空间位置数据与相距跳数得出各节点之间的相似程度,结合高斯径向基核函数求解未知节点的横轴、纵轴的空间坐标,确定各网络节点的空间位置;根据网络节点的属性特征与投票机制建立节点复制攻击模型,凭借组合加权k近邻分类法划分节点类型,并将结果传送至簇头节点,由簇头节点做出最后的仲裁,识别出节点复制攻击行为。仿真结果表明,所提方法的节点复制攻击检测率最大值为99.5%,最小值为97.9%,对节点复制攻击检测的耗时为5.41 s,通信开销数据包数量最大值为209个,最小值为81个。 展开更多
关键词 无线传感网络 攻击检测 组合加权k近邻分类 复制节点 部署区域 信标节点
下载PDF
一种Tor网站多网页多标签指纹识别方法
4
作者 蔡满春 席荣康 +1 位作者 朱懿 赵忠斌 《信息网络安全》 CSCD 北大核心 2024年第7期1088-1097,共10页
Tor匿名通信系统经常被不法分子用来从事暗网犯罪活动,Tor网页指纹识别技术为暗网监管提供技术手段。针对单标签Tor网页指纹识别技术在网络监管中实用性差的问题,文章提出一种多网页多标签Tor指纹识别方法。首先,对标准粒子群算法、K最... Tor匿名通信系统经常被不法分子用来从事暗网犯罪活动,Tor网页指纹识别技术为暗网监管提供技术手段。针对单标签Tor网页指纹识别技术在网络监管中实用性差的问题,文章提出一种多网页多标签Tor指纹识别方法。首先,对标准粒子群算法、K最近邻算法进行参数优化并整合,提出自适应粒子群优化K最近邻模型APSO-KNN,进行连续多标签网页分割。然后,利用自注意力机制和一维卷积神经网络模型对网页分割片段进行内容识别。最后,利用APSO-KNN记忆打分机制选择识别失败的网页的次优分割点进行网页重分割。实验结果表明,APSO-KNN采用粒子搜索机制代替穷举遍历机制寻找分割点能取得96.30%的分割准确率,分割效率较传统KNN算法有显著提高。深度学习模型SA-1DCNN抗网页分割误差性能远优于机器学习模型,识别准确率可达96.1%。 展开更多
关键词 洋葱路由 网页指纹 粒子群优化算法 加权K最近邻算法
下载PDF
管制员个体工作负荷多维量化研究
5
作者 王莉莉 顾秋丽 《中国安全科学学报》 CAS CSCD 北大核心 2024年第6期1-9,共9页
为提高空管系统高效运行,聚焦管制员个体工作负荷建立量化模型;首先设计试验采集一线16名区域管制员的岗前与岗后各项指标数据,根据测试数据变化,选择出敏感变量,描述个体工作负荷;其次建立包含心理感知负荷、生理反应负荷与脑力工作负... 为提高空管系统高效运行,聚焦管制员个体工作负荷建立量化模型;首先设计试验采集一线16名区域管制员的岗前与岗后各项指标数据,根据测试数据变化,选择出敏感变量,描述个体工作负荷;其次建立包含心理感知负荷、生理反应负荷与脑力工作负荷3个维度的综合评估指标体系,构建管制员个体工作负荷指数模型;然后通过熵权-客观组合法求解个体工作负荷指数最优权重,最终得出管制员个体工作负荷量化模型;最后进一步根据管制员个体工作负荷综合指数进行K-Means聚类分析,结果表明:管制员因个体不同岗后工作负荷存在差异。依据个体工作负荷指数大小,管制员可分为3类,A类管制员数量占总人数50%,岗后个体工作负荷增长最小;B类管制员数量占总人数43.75%,岗后负荷增长居中;C类管制员数量占总人数6.25%,岗后负荷增长最大,与教员对管制员能力的评分结果一致。 展开更多
关键词 空中交通管制员 个体工作负荷 配对样本T检验 熵权-客观组合法 K-MEANS聚类
下载PDF
缺失数据过程的自适应多元EWMA控制图
6
作者 濮晓龙 项冬冬 陈昕妍 《应用概率统计》 CSCD 北大核心 2024年第2期343-363,共21页
随着生产过程的日益复杂,多元统计过程控制(SPC)领域对在线算法的关注与日俱增.然而,基于完整数据和均匀时间间隔假设的传统方法在存在缺失数据时表现并不理想.为了最大化利用可用信息,我们提出了一种自适应指数加权移动平均(EWMA)控制... 随着生产过程的日益复杂,多元统计过程控制(SPC)领域对在线算法的关注与日俱增.然而,基于完整数据和均匀时间间隔假设的传统方法在存在缺失数据时表现并不理想.为了最大化利用可用信息,我们提出了一种自适应指数加权移动平均(EWMA)控制图,它采用了加权插补方法,能够充分利用完整数据和不完整数据之间的关系.具体而言,我们首先引入了两种恢复方法:改进的K近邻方法和传统的单变量EWMA方法.然后,我们构造了一个自适应加权函数来结合这两种方法,即当样本信息表明过程超出控制的可能性增加时,会降低EWMA统计量的权重,反之亦然.通过模拟结果和一个实际案例,我们证明了所提出方案的稳健性和敏感性. 展开更多
关键词 在线监控 完全随机缺失 加权插补 指数加权移动平均 改进的K近邻
下载PDF
一种基于粗糙熵的改进K-modes聚类算法
7
作者 刘财辉 曾雄 谢德华 《南京理工大学学报》 CAS CSCD 北大核心 2024年第3期335-341,共7页
K-modes聚类算法被广泛应用于人工智能、数据挖掘等领域。传统的K-modes聚类算法有不错的聚类效果,但是存在迭代次数多、计算量大、容易受到冗余属性的干扰等问题,且仅采用简单的0-1匹配的方法来定义2个样本属性值之间的距离,没有充分... K-modes聚类算法被广泛应用于人工智能、数据挖掘等领域。传统的K-modes聚类算法有不错的聚类效果,但是存在迭代次数多、计算量大、容易受到冗余属性的干扰等问题,且仅采用简单的0-1匹配的方法来定义2个样本属性值之间的距离,没有充分考虑每个属性对聚类结果的影响。针对上述问题,该文将粗糙熵引入K-modes算法。首先利用粗糙集属性约简算法消除冗余属性,确定各属性的重要程度;然后利用粗糙熵确定每个属性的权重,从而定义新的类内距离。将该文所提算法与传统的K-modes聚类算法分别在4组公开数据集上进行对比试验。试验结果表明,该文所提算法聚类准确率比传统的K-modes聚类算法更高。 展开更多
关键词 聚类 K-modes算法 粗糙集 粗糙熵 属性约简 权重
下载PDF
基于气候资源禀赋的TMY权重因子调整方法研究
8
作者 李红莲 王梦丽 +2 位作者 张文豪 黄金 吕文 《太阳能学报》 EI CAS CSCD 北大核心 2024年第2期50-58,共9页
提出一种基于气候资源禀赋的典型气象年(TMY)权重因子调整方法。在参数间相关分析的基础上,遴选干球温度、相对湿度、日照时数与气温日较差作为分区指标,采用K-均值聚类算法对中国地域气候进行分区,依据台站所处地域的太阳能、风能等资... 提出一种基于气候资源禀赋的典型气象年(TMY)权重因子调整方法。在参数间相关分析的基础上,遴选干球温度、相对湿度、日照时数与气温日较差作为分区指标,采用K-均值聚类算法对中国地域气候进行分区,依据台站所处地域的太阳能、风能等资源动态调整TMY权重因子。结果显示,调整后的权重因子构建的TMY更加精准,更能体现地域的气候特征。 展开更多
关键词 典型气象年 权重因子 气候资源禀赋 K-均值聚类算法 建筑能耗模拟
下载PDF
基于密度峰值聚类和改进LWLR的短期电力负荷预测 被引量:1
9
作者 王晨宇 张钊 +2 位作者 侯佳龙 周红艳 陈雪波 《东北电力大学学报》 2024年第4期113-120,共8页
短期电力负荷数据具有复杂性和不确定性等特征,这些特征往往会对数据的预测结果产生不可控制的影响。使用传统的聚类方法对短期电力负荷数据进行聚类分析时,预测结果会因电力负荷的不确定性等特点产生偏差。此外,考虑到全局回归预测方... 短期电力负荷数据具有复杂性和不确定性等特征,这些特征往往会对数据的预测结果产生不可控制的影响。使用传统的聚类方法对短期电力负荷数据进行聚类分析时,预测结果会因电力负荷的不确定性等特点产生偏差。此外,考虑到全局回归预测方法在建模阶段无法对不同部分的数据采用不同的建模方式,限制了对于不同分布区域或不同特征子集的自适应性能力的问题。文中采用K近邻和加权相似性的密度峰值聚类算法对短期电力负荷数据进行特征分类,并提出一种利用K近邻的局部加权线性回归模型对短期电力负荷进行预测。该模型的优点在于避免了欧氏距离对簇类中心选取的影响,降低了全局数据对局部数据的负面影响,避免了簇类划分的集中效应,提高了模型的泛化能力。通过与模糊C均值聚类和传统的全局回归预测方法对比,本文提出的模型对于真实电力数据的预测效果更加优越。 展开更多
关键词 密度峰值聚类 K近邻 局部加权线性回归 电力负荷预测 预测性能评价
下载PDF
基于稳定AP选择的动态室内定位方法 被引量:1
10
作者 魏军 罗恒 +1 位作者 倪启东 陈明哲 《微电子学与计算机》 2024年第1期37-44,共8页
在室内复杂多变环境下,基于接收信号强度指示(Received Signal Strength Indication,RSSI)的位置指纹算法得到了广泛研究。其中,在线阶段的匹配算法通常采用加权K近邻(Weighted K-Nearest Neighbor,WKNN)算法,但该算法往往采用固定k值... 在室内复杂多变环境下,基于接收信号强度指示(Received Signal Strength Indication,RSSI)的位置指纹算法得到了广泛研究。其中,在线阶段的匹配算法通常采用加权K近邻(Weighted K-Nearest Neighbor,WKNN)算法,但该算法往往采用固定k值方法存在较大的定位误差,具有一定的局限性,并且离线阶段构建位置指纹数据库时并没有考虑到无线接入点(Access Point,AP)信号的波动性。因此,存在大量不同AP的冗余信息,对定位效果产生较大影响。针对上述问题,提出一种基于稳定AP选择的动态室内定位方法。首先,通过高斯滤波对RSSI值进行预处理,滤除随机干扰;然后,通过优选AP算法计算AP的稳定度,筛选出关键AP用于定位;最后,利用距离阈值动态调整k值,并对权重系数进行改善,实现了对WKNN算法的改进。实验结果表明,基于稳定AP选择的动态室内定位方法可以有效去除冗余AP信息,并实现动态k值方案,在定位精度上优于K近邻(K-Nearest Neighbors,KNN)算法、加权K近邻算法和改进的加权K近邻算法,平均定位误差分别降低了26.13%、21.29%和9.89%,定位误差在1.5 m内的累积分布概率达到了60.41%,分别提升了25%、16.66%和8.33%,定位效果提升明显。 展开更多
关键词 室内定位 优选AP 信号强度 加权K近邻算法 信号波动 指纹匹配
下载PDF
基于邻域互信息与K-means特征聚类的特征选择 被引量:1
11
作者 孙林 梁娜 徐久成 《智能系统学报》 CSCD 北大核心 2024年第4期983-996,共14页
针对多数邻域系统通过人工调试很难搜索到最佳邻域半径,以及传统的K-means聚类需要随机选取簇中心和指定簇的数目等问题,提出了一种基于邻域互信息与K-means特征聚类的特征选择方法。首先,将样本在各特征下与其他样本距离的平均值作为... 针对多数邻域系统通过人工调试很难搜索到最佳邻域半径,以及传统的K-means聚类需要随机选取簇中心和指定簇的数目等问题,提出了一种基于邻域互信息与K-means特征聚类的特征选择方法。首先,将样本在各特征下与其他样本距离的平均值作为自适应邻域半径,确定样本的邻域集,并由此构建自适应邻域熵、邻域互信息、归一化邻域互信息等度量,反映特征之间的相关性;然后,基于归一化邻域互信息构建自适应K近邻集合,利用Pearson相关系数表示特征的权重定义加权K近邻密度,实现自动选取K-means算法的簇中心,进而完成K-means特征聚类;最后,给出加权平均冗余度,选出每个特征簇中加权平均冗余度最大的特征构成最优特征子集。实验结果表明所提算法不仅可以有效提升特征选择的分类结果而且可以获得更好的聚类效果。 展开更多
关键词 特征选择 邻域互信息 K-MEANS 特征聚类 自适应K近邻 特征权重 加权K近邻密度
下载PDF
RSSI和PC-CSI加权融合的指纹定位方法 被引量:2
12
作者 刘方家 廖子俊 +1 位作者 张赫航 韩静瑶 《重庆邮电大学学报(自然科学版)》 CSCD 北大核心 2024年第2期328-336,共9页
针对基于RSSI和CSI的指纹定位技术易受环境干扰、定位精度较低的问题,提出了一种基于RSSI指纹和相位修正信道状态信息(phase correct based channel state information,PC-CSI)指纹的加权融合指纹定位技术。基于PC-CSI的指纹定位在传统... 针对基于RSSI和CSI的指纹定位技术易受环境干扰、定位精度较低的问题,提出了一种基于RSSI指纹和相位修正信道状态信息(phase correct based channel state information,PC-CSI)指纹的加权融合指纹定位技术。基于PC-CSI的指纹定位在传统基于CSI幅值的指纹定位基础上增加相位信息对定位结果进行修正,之后对RSSI指纹和PC-CSI指纹的定位结果加权重定位。实验结果表明,提出的加权融合指纹定位算法与基于CSI的主动定位算法相比,平均定位误差(mean position error,MPE)降低了36.2%,能满足室内定位需求。 展开更多
关键词 室内定位技术 接收信号强度指示(RSSI) 信道状态信息(CSI) 加权K近邻(WKNN)算法
下载PDF
一种ALMAE-SWSupAE裂纹声发射信号识别算法研究
13
作者 沈鹏 张润锋 +1 位作者 赵永峰 陈江义 《重庆理工大学学报(自然科学)》 CAS 北大核心 2024年第7期204-210,共7页
针对裂纹声发射信号的识别问题,基于大边缘自编码器(LMAE)和堆叠融合监督自编码器(SFSupAE)设计了自适应大边缘堆叠权重监督自编码(ALMAE-SWSupAE)算法。针对LMAE中的固定k值问题,引入自适应k值算法,修改h(s)运算方法解决数据溢出问题;... 针对裂纹声发射信号的识别问题,基于大边缘自编码器(LMAE)和堆叠融合监督自编码器(SFSupAE)设计了自适应大边缘堆叠权重监督自编码(ALMAE-SWSupAE)算法。针对LMAE中的固定k值问题,引入自适应k值算法,修改h(s)运算方法解决数据溢出问题;在SFSupAE中引入子分类器的性能权重优化分配策略,并设计新的权重函数;使用铝合金试件进行拉伸裂纹实验,识别采集到的声发射信号。研究结果表明:所提出的ALMAE-SWSupAE算法法识别准确率达到98.89%,相较于SSAE、SDAE、CAE、StAE和SAE方法性能具有明显提升,并在消融实验中证明了其改进有效性。 展开更多
关键词 裂纹声发射信号 信号识别 ALMAE-SWSupAE 自适应k值算法 权重分配策略
下载PDF
信号交叉口直行非机动车膨胀特性分析与风险评估 被引量:1
14
作者 崔洪军 周启航 朱敏清 《交通运输系统工程与信息》 EI CSCD 北大核心 2024年第1期138-148,共11页
随着信号交叉口的非机动车流量激增,非机动车通过交叉口时的膨胀特性也进一步凸显。针对该现象所带来的冲突问题,在分析非机动车膨胀特性的基础上,提出信号交叉口直行非机动车冲突风险实时评估方法。选取天津市4个典型城市交叉口,通过... 随着信号交叉口的非机动车流量激增,非机动车通过交叉口时的膨胀特性也进一步凸显。针对该现象所带来的冲突问题,在分析非机动车膨胀特性的基础上,提出信号交叉口直行非机动车冲突风险实时评估方法。选取天津市4个典型城市交叉口,通过视频分析软件,获取非机动车的行驶行为数据,分析膨胀特性下直行非机动车行驶行为特征。在此基础上,通过K-means聚类分析将直行非机动车的行驶区域划分为释放区、膨胀区和汇入区这3个区域。构建以直行非机动车不同行驶区域为一级指标,不同区域内的行驶行为特征为二级指标的信号交叉口直行非机动车冲突风险评价体系,提出基于改进熵权法的非机动车冲突风险熵计算方法。以天津市围堤道交叉口为例进行风险评估,结果表明,其冲突风险主要集中于车辆超车与并行行为频发的地带,风险点变化和分布与车辆膨胀过程中风险变化趋势一致,可以为信号交叉口非机动车冲突风险研究提供一定的参考。 展开更多
关键词 交通工程 信号交叉口 膨胀特性 熵权法 K-MEANS聚类 风险评估
下载PDF
基于三维子轨迹聚类算法的临床路径挖掘方法
15
作者 刘玉江 罗双红 郑庆霄 《计算机技术与发展》 2024年第10期156-163,共8页
针对临床路径的制定和实施存在受医院自身条件及疾病复杂程度等因素影响的问题,提出一种基于三维子轨迹聚类算法的临床路径挖掘方法。根据临床诊疗过程数据具有规律性和时序性的特征,该方法首先将大量临床诊疗过程数据转换为近似航空轨... 针对临床路径的制定和实施存在受医院自身条件及疾病复杂程度等因素影响的问题,提出一种基于三维子轨迹聚类算法的临床路径挖掘方法。根据临床诊疗过程数据具有规律性和时序性的特征,该方法首先将大量临床诊疗过程数据转换为近似航空轨迹的三维时序轨迹,并使用时间加权方法对轨迹分布进行调整。其次基于传统TRACLUS算法,使用KD树进行邻近搜索加速优化,引入希尔伯特空间中的相似性度量方法使其适应于高维轨迹聚类。最后通过对大量轨迹进行聚类分析,从中提取出典型的临床诊疗过程,进而得到实际实施的临床路径。通过使用该方法对某三甲医院新生儿低血糖临床数据进行了一系列实验,结果证实该方法能够提炼出本地各种情况下实际实施的临床路径,可辅助医生制定更个性化的治疗方案,并且该实验结果为标准新生儿低血糖临床路径的改进和实施提供了方向和有力依据。 展开更多
关键词 数据挖掘 临床路径 TRACLUS算法 轨迹聚类 KD树 时间加权
下载PDF
RLDEAO优化的空气质量数据聚类分析
16
作者 田闯 黄鹤 +2 位作者 杨澜 王会峰 茹锋 《浙江大学学报(理学版)》 CAS CSCD 北大核心 2024年第5期542-553,共12页
对空气质量数据进行聚类,传统聚类方法因受初始点的影响,存在随机性高、聚类精度低以及多个中心点出现在同一簇中的问题,为此提出了一种反向学习差分进化天鹰优化器(RLDEAO)优化的K-means互补迭代空气质量数据聚类方法。天鹰优化器(aqui... 对空气质量数据进行聚类,传统聚类方法因受初始点的影响,存在随机性高、聚类精度低以及多个中心点出现在同一簇中的问题,为此提出了一种反向学习差分进化天鹰优化器(RLDEAO)优化的K-means互补迭代空气质量数据聚类方法。天鹰优化器(aquila optimizer,AO)算法具有很强的探索能力,不易受初始点的影响且更易实现,但易陷入局部最优。基于自适应逐维小孔成像反向学习策略、停滞扰动结合莱维飞行策略以及生物进化策略等改进思想,对AO算法进行了改进,有效提高了搜索性能,避免了局部最优;在求取聚类中心点时,设计了一种加权最大最小距离积法(weighted maximum minimum distance product,WMMP),能反映各特征的重要性,对改进聚类结果作用良好;将RLDEAO与WMMP相结合优化K-means互补迭代,提高了搜索速率和搜索精度。通过在多个数据集上的聚类测试,发现RLDEAO-KMC算法的收敛精度和聚类效果较AO-KMC、FCM、KMC、KMC++算法更优。可知,RLDEAO-KMC算法可以更高效地对空气质量数据进行聚类分析,有针对性地做出预测和应对。 展开更多
关键词 K-MEANS聚类算法 天鹰优化器(AO) 加权最大最小距离积法
下载PDF
RSSI室内定位在线匹配算法的研究与性能比较
17
作者 吴之宁 汪学刚 邹林 《江西师范大学学报(自然科学版)》 CAS 北大核心 2024年第1期69-74,共6页
针对在基于WiFi信号强度RSSI进行室内定位的指纹库算法的在线匹配环节中存在的不足,该文利用基于阈值R_(0)动态筛选匹配的指纹点数,提出了一种增强加权k近邻算法(EWKNN).因为阈值R_(0)可以动态筛选指纹库中的样本点,所以能够提高增强加... 针对在基于WiFi信号强度RSSI进行室内定位的指纹库算法的在线匹配环节中存在的不足,该文利用基于阈值R_(0)动态筛选匹配的指纹点数,提出了一种增强加权k近邻算法(EWKNN).因为阈值R_(0)可以动态筛选指纹库中的样本点,所以能够提高增强加权k近邻算法的适用度和高精度.仿真结果表明:在R_(0)设置恰当的情况下,增强加权k近邻算法的计算量与加权k近邻算法(WKNN)相当,但定位精度更高. 展开更多
关键词 室内定位 指纹库在线匹配 增强加权k近邻算法 加权k近邻算法 累积分布函数
下载PDF
基于K-shell的加权网络节点影响力研究方法
18
作者 吴思源 许爽 《大连民族大学学报》 CAS 2024年第5期444-448,共5页
针对现有关键节点识别方法在准确性和分辨率上的局限性,提出了一种改进的K-shell排序方法,在传统K-shell分解的基础上,结合节点度数、邻居节点影响力和边权重,引入信息熵理论,细化同一K-shell层内节点的相对重要性。实验结果表明:该方... 针对现有关键节点识别方法在准确性和分辨率上的局限性,提出了一种改进的K-shell排序方法,在传统K-shell分解的基础上,结合节点度数、邻居节点影响力和边权重,引入信息熵理论,细化同一K-shell层内节点的相对重要性。实验结果表明:该方法显著提升了排序的准确性和单调性,能够更有效地区分同一K-shell层内的节点重要性,准确识别出对网络结构影响较大的关键节点。该算法从多个维度考虑影响关键节点识别重要性的因素,在准确性和分辨率方面有显著的提升,对网络匿名隐私保护中的关键节点挖掘具有重要意义。 展开更多
关键词 节点重要性 K-SHELL 加权网络 SIR模型 复杂网络
下载PDF
基于Bi-LSTM神经网络的室内可见光定位方法
19
作者 王乐乐 秦岭 +1 位作者 胡晓莉 赵德胜 《光通信技术》 北大核心 2024年第2期36-41,共6页
双向长短时记忆(Bi-LSTM)神经网络由于超参数众多,难以获得最优系统模型。同时,考虑到灰狼优化(GWO)算法可能过早收敛的情况,提出了一种采用GWO结合粒子群(GWO-PSO)算法优化Bi-LSTM神经网络的单灯定位方法。通过优化网络中的学习率、隐... 双向长短时记忆(Bi-LSTM)神经网络由于超参数众多,难以获得最优系统模型。同时,考虑到灰狼优化(GWO)算法可能过早收敛的情况,提出了一种采用GWO结合粒子群(GWO-PSO)算法优化Bi-LSTM神经网络的单灯定位方法。通过优化网络中的学习率、隐藏神经元个数等超参数,提高系统的稳定性和定位精度。最后,采用加权K邻近(WKNN)算法对误差较大的点进行优化,以获得更精确的定位位置。仿真结果表明,在3 m×3.6 m×3 m的室内环境中,所提定位方法的平均定位误差为3.57 cm,其中90%的定位误差在6 cm内。 展开更多
关键词 可见光定位 双向长短时记忆 灰狼结合粒子群 加权K近邻
下载PDF
基于泡沫图像特征加权K近邻算法的锌矿浮选工况识别方法
20
作者 罗靓 彭成 罗浩 《矿产保护与利用》 2024年第5期93-99,共7页
浮选工况识别在泡沫浮选工程中起着至关重要的作用,仅依靠人工经验进行主观性识别,准确性和效率都低。为此提出了一种考虑泡沫图像特征间相互作用的加权K近邻(KNN)算法用于实现浮选工况类别的识别。在本研究中,首先,通过信息熵对泡沫图... 浮选工况识别在泡沫浮选工程中起着至关重要的作用,仅依靠人工经验进行主观性识别,准确性和效率都低。为此提出了一种考虑泡沫图像特征间相互作用的加权K近邻(KNN)算法用于实现浮选工况类别的识别。在本研究中,首先,通过信息熵对泡沫图像特征与浮选工况类别之间的相关性进行量化,同时评估该特征与其他特征之间的冗余性。然后,计算该特征与浮选工况类别相关性和该特征与其他特征冗余性之间的差值,将这一差值作为特征的权重。其次,在KNN算法中针对欧式距离进行特征加权,以实现KNN算法的特征加权。然后,将特征选择过程嵌入到特征加权KNN分类算法的训练过程中,并选取分类准确率最高的特征子集作为最优特征子集。最后,基于最优特征子集完成浮选工况的识别。研究结果表明,本方法与其他基准分类算法相比,在分类准确度和时间上都达到了最佳效果,验证了本研究所提出的浮选工况识别方法的有效性。 展开更多
关键词 浮选工况识别 泡沫图像特征 K近邻算法 特征加权
下载PDF
上一页 1 2 37 下一页 到第
使用帮助 返回顶部