期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
A K-means clustering based blind multiband spectrum sensing algorithm for cognitive radio 被引量:2
1
作者 LEI Ke-jun TAN Yang-hong +1 位作者 YANG Xi WANG Han-rui 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第10期2451-2461,共11页
In this paper,a blind multiband spectrum sensing(BMSS)method requiring no knowledge of noise power,primary signal and wireless channel is proposed based on the K-means clustering(KMC).In this approach,the KMC algorith... In this paper,a blind multiband spectrum sensing(BMSS)method requiring no knowledge of noise power,primary signal and wireless channel is proposed based on the K-means clustering(KMC).In this approach,the KMC algorithm is used to identify the occupied subband set(OSS)and the idle subband set(ISS),and then the location and number information of the occupied channels are obtained according to the elements in the OSS.Compared with the classical BMSS methods based on the information theoretic criteria(ITC),the new method shows more excellent performance especially in the low signal-to-noise ratio(SNR)and the small sampling number scenarios,and more robust detection performance in noise uncertainty or unequal noise variance applications.Meanwhile,the new method performs more stablely than the ITC-based methods when the occupied subband number increases or the primary signals suffer multi-path fading.Simulation result verifies the effectiveness of the proposed method. 展开更多
关键词 cognitive radio(CR) blind multiband spectrum sensing(BMSS) k-means clustering(kMC) occupied subband set(OSS) idle subband set(ISS) information theoretic criteria(ITC) noise uncertainty
下载PDF
Two-Stage Resource Allocation Scheme for Three-Tier Ultra-Dense Network 被引量:5
2
作者 Junwei Huang Pengguang Zhou +2 位作者 Kai Luo Zhiming Yang Gongcheng He 《China Communications》 SCIE CSCD 2017年第10期118-129,共12页
In 5 G Ultra-dense Network(UDN), resource allocation is an efficient method to manage inter-small-cell interference. In this paper, a two-stage resource allocation scheme is proposed to supervise interference and reso... In 5 G Ultra-dense Network(UDN), resource allocation is an efficient method to manage inter-small-cell interference. In this paper, a two-stage resource allocation scheme is proposed to supervise interference and resource allocation while establishing a realistic scenario of three-tier heterogeneous network architecture. The scheme consists of two stages: in stage I, a two-level sub-channel allocation algorithm and a power control method based on the logarithmic function are applied to allocate resource for Macrocell and Picocells, guaranteeing the minimum system capacity by considering the power limitation and interference coordination; in stage II, an interference management approach based on K-means clustering is introduced to divide Femtocells into different clusters. Then, a prior sub-channel allocation algorithm is employed for Femtocells in diverse clusters to mitigate the interference and promote system performance. Simulation results show that the proposed scheme contributes to the enhancement of system throughput and spectrum efficiency while ensuring the system energy efficiency. 展开更多
关键词 ultra-dense network resource allocation logarithmic function k-means
下载PDF
A multi-view K-multiple-means clustering method
3
作者 ZHANG Nini GE Hongwei 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2021年第4期405-411,共7页
The K-multiple-means(KMM)retains the simple and efficient advantages of the K-means algorithm by setting multiple subclasses,and improves its effect on non-convex data sets.And aiming at the problem that it cannot be ... The K-multiple-means(KMM)retains the simple and efficient advantages of the K-means algorithm by setting multiple subclasses,and improves its effect on non-convex data sets.And aiming at the problem that it cannot be applied to the Internet on a multi-view data set,a multi-view K-multiple-means(MKMM)clustering method is proposed in this paper.The new algorithm introduces view weight parameter,reserves the design of setting multiple subclasses,makes the number of clusters as constraint and obtains clusters by solving optimization problem.The new algorithm is compared with some popular multi-view clustering algorithms.The effectiveness of the new algorithm is proved through the analysis of the experimental results. 展开更多
关键词 k-multiple-means(kMM)clustering weight parameters multi-view k-multiple-means(MkMM)method
下载PDF
Clustering: from Clusters to Knowledge
4
作者 Peter Grabusts 《Computer Technology and Application》 2013年第6期284-290,共7页
Data analysis and automatic processing is often interpreted as knowledge acquisition. In many cases it is necessary to somehow classify data or find regularities in them. Results obtained in the search of regularities... Data analysis and automatic processing is often interpreted as knowledge acquisition. In many cases it is necessary to somehow classify data or find regularities in them. Results obtained in the search of regularities in intelligent data analyzing applications are mostly represented with the help of IF-THEN rules. With the help of these rules the following tasks are solved: prediction, classification, pattern recognition and others. Using different approaches---clustering algorithms, neural network methods, fuzzy rule processing methods--we can extract rules that in an understandable language characterize the data. This allows interpreting the data, finding relationships in the data and extracting new rules that characterize them. Knowledge acquisition in this paper is defined as the process of extracting knowledge from numerical data in the form of rules. Extraction of rules in this context is based on clustering methods K-means and fuzzy C-means. With the assistance of K-means, clustering algorithm rules are derived from trained neural networks. Fuzzy C-means is used in fuzzy rule based design method. Rule extraction methodology is demonstrated in the Fisher's Iris flower data set samples. The effectiveness of the extracted rules is evaluated. Clustering and rule extraction methodology can be widely used in evaluating and analyzing various economic and financial processes. 展开更多
关键词 Data analysis clustering algorithms k-MEANS fuzzy C-means rule extraction.
下载PDF
基于Pearson系数的芯片数据预处理方法 被引量:1
5
作者 王修竹 刘自伟 +1 位作者 齐阳 鲍竞 《计算机时代》 2006年第11期37-38,共2页
数据预处理可以大大降低数据挖掘算法的成本和提高数据挖掘的效率,尤其对于海量和高维的基因表达数据更为重要。针对K-means算法对数据预处理手段敏感的问题,文章提出了一种以管家基因法初始化数据、Pearson系数度量芯片数据相似性的预... 数据预处理可以大大降低数据挖掘算法的成本和提高数据挖掘的效率,尤其对于海量和高维的基因表达数据更为重要。针对K-means算法对数据预处理手段敏感的问题,文章提出了一种以管家基因法初始化数据、Pearson系数度量芯片数据相似性的预处理方法。具体的实验数据证明了该方法能很好地解决上述问题并有效地提高k-means算法的收敛速度。 展开更多
关键词 管家基因法 Pearson相关系数 k.均值聚类 芯片数据
下载PDF
Auto-expanded multi query examples technology in content-based image retrieval 被引量:1
6
作者 王小玲 谢康林 《Journal of Southeast University(English Edition)》 EI CAS 2005年第3期287-292,共6页
In order to narrow the semantic gap existing in content-based image retrieval (CBIR),a novel retrieval technology called auto-extended multi query examples (AMQE) is proposed.It expands the single one query image ... In order to narrow the semantic gap existing in content-based image retrieval (CBIR),a novel retrieval technology called auto-extended multi query examples (AMQE) is proposed.It expands the single one query image used in traditional image retrieval into multi query examples so as to include more image features related with semantics.Retrieving images for each of the multi query examples and integrating the retrieval results,more relevant images can be obtained.The property of the recall-precision curve of a general retrieval algorithm and the K-means clustering method are used to realize the expansion according to the distance of image features of the initially retrieved images.The experimental results demonstrate that the AMQE technology can greatly improve the recall and precision of the original algorithms. 展开更多
关键词 content-based image retrieval SEMANTIC multi query examples k-means clustering
下载PDF
Bag-of-visual-words model for artificial pornographic images recognition
7
作者 李芳芳 罗四伟 +1 位作者 刘熙尧 邹北骥 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第6期1383-1389,共7页
It is illegal to spread and transmit pornographic images over internet,either in real or in artificial format.The traditional methods are designed to identify real pornographic images and they are less efficient in de... It is illegal to spread and transmit pornographic images over internet,either in real or in artificial format.The traditional methods are designed to identify real pornographic images and they are less efficient in dealing with artificial images.Therefore,criminals turn to release artificial pornographic images in some specific scenes,e.g.,in social networks.To efficiently identify artificial pornographic images,a novel bag-of-visual-words based approach is proposed in the work.In the bag-of-words(Bo W)framework,speeded-up robust feature(SURF)is adopted for feature extraction at first,then a visual vocabulary is constructed through K-means clustering and images are represented by an improved Bo W encoding method,and finally the visual words are fed into a learning machine for training and classification.Different from the traditional BoW method,the proposed method sets a weight on each visual word according to the number of features that each cluster contains.Moreover,a non-binary encoding method and cross-matching strategy are utilized to improve the discriminative power of the visual words.Experimental results indicate that the proposed method outperforms the traditional method. 展开更多
关键词 artificial pornographic image bag-of-words (BoW) speeded-up robust feature (SURF) descriptors visual vocabulary
下载PDF
Single Image Super-Resolution by Clustered Sparse Representation and Adaptive Patch Aggregation
8
作者 黄伟 肖亮 +2 位作者 韦志辉 费选 王凯 《China Communications》 SCIE CSCD 2013年第5期50-61,共12页
A Single Image Super-Resolution (SISR) reconstruction method that uses clustered sparse representation and adaptive patch aggregation is proposed. First, we randomly extract image patch pairs from the training images,... A Single Image Super-Resolution (SISR) reconstruction method that uses clustered sparse representation and adaptive patch aggregation is proposed. First, we randomly extract image patch pairs from the training images, and divide these patch pairs into different groups by K-means clustering. Then, we learn an over-complete sub-dictionary pair offline from corresponding group patch pairs. For a given low-resolution patch, we adaptively select one sub-dictionary to reconstruct the high resolution patch online. In addition, non-local self-similarity and steering kernel regression constraints are integrated into patch aggregation to improve the quality of the recovered images. Experiments show that the proposed method is able to realize state-of-the-art performance in terms of both objective evaluation and visual perception. 展开更多
关键词 super-resolution sparse representation non-local means steering kernel regression patch aggregation
下载PDF
Research on natural language recognition algorithm based on sample entropy
9
作者 Juan Lai 《International Journal of Technology Management》 2013年第2期47-49,共3页
Sample entropy can reflect the change of level of new information in signal sequence as well as the size of the new information. Based on the sample entropy as the features of speech classification, the paper firstly ... Sample entropy can reflect the change of level of new information in signal sequence as well as the size of the new information. Based on the sample entropy as the features of speech classification, the paper firstly extract the sample entropy of mixed signal, mean and variance to calculate each signal sample entropy, finally uses the K mean clustering to recognize. The simulation results show that: the recognition rate can be increased to 89.2% based on sample entropy. 展开更多
关键词 sample entropy voice activity detection speech processing
下载PDF
Integrating OWA and Data Mining for Analyzing Customers Churn in E-Commerce 被引量:1
10
作者 CAO Jie YU Xiaobing ZHANG Zhifei 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2015年第2期381-392,共12页
Customers are of great importance to E-commerce in intense competition.It is known that twenty percent customers produce eighty percent profiles.Thus,how to find these customers is very critical.Customer lifetime valu... Customers are of great importance to E-commerce in intense competition.It is known that twenty percent customers produce eighty percent profiles.Thus,how to find these customers is very critical.Customer lifetime value(CLV) is presented to evaluate customers in terms of recency,frequency and monetary(RFM) variables.A novel model is proposed to analyze customers purchase data and RFM variables based on ordered weighting averaging(OWA) and K-Means cluster algorithm.OWA is employed to determine the weights of RFM variables in evaluating customer lifetime value or loyalty.K-Means algorithm is used to cluster customers according to RFM values.Churn customers could be found out by comparing RFM values of every cluster group with average RFM.Questionnaire is conducted to investigate which reasons cause customers dissatisfaction.Rank these reasons to help E-commerce improve services.The experimental results have demonstrated that the model is effective and reasonable. 展开更多
关键词 Customer life value E-COMMERCE k-MEANS OWA.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部