Florogenesis is one of the most complicated and interesting processes in the nature. This process involves developmental, physiological and molecular events leading to transformation from vegetative to reproductive ph...Florogenesis is one of the most complicated and interesting processes in the nature. This process involves developmental, physiological and molecular events leading to transformation from vegetative to reproductive phase for optimal seed production and the continuation of species. The basic knowledge about flowering processes, male and female sexual systems support basic and applied research and breeding programs. Most of the onion varieties from India are short day varieties, more diverse than other exotic germplasm and useful as a source of new alleles for supporting breeding programs. The present investigation was focused to study for the first time florogenesis process by scanning electron study for the first time florogenesis process by scanning electron microscopy (SEM) and development of female gametophytes by light microscopy in order to acquire basic knowledge useful for optimizing in vitro process to produce gynogenic haploid to support and speed breeding program in short-day onion Allium cepa L. cv. Krishnapuram (KP) or Bangalore Rose. This study revealed that shoot primordium differentiated into inflorescence meristem in the month of December, while seeds were planted in the field in the September. The individual florets are preceded by a variying number of floral initials. The female gametophyte developed from chalazal side megaspore. The embryo sac development is a bisporic Allium type showing short-lived antipodals. The histological study suggests that the use of big or preanthesis flower buds with embryo sac for production of gynogenic haploids to support breeding program in onion cv. Krishnapuram (KP). However further studies are needed for confirmation of this observation.展开更多
The feature of conduction band (CB) of Tensile-Strained Si(TS-Si) on a relaxed Si1-xGex substrate is systematically investigated, including the number of equivalent CB edge energy extrema, CB energy minima, the po...The feature of conduction band (CB) of Tensile-Strained Si(TS-Si) on a relaxed Si1-xGex substrate is systematically investigated, including the number of equivalent CB edge energy extrema, CB energy minima, the position of the extremal point, and effective mass. Based on an analysis of symmetry under strain, the number of equivalent CB edge energy extrema is presented; Using the K.P method with the help of perturbation theory, dispersion relation near minima of CB bottom energy, derived from the linear deformation potential theory, is determined, from which the parameters, namely, the position of the extremal point, and the longitudinal and transverse masses (m1^* and mt^*)are obtained.展开更多
The electronic properties of CdTe/ZnTe quantum rings (QRs) are investigated as functions of size and temperature using an eight-band strain-dependent k.p Hamiltonian. The size effects of diameter and height on the s...The electronic properties of CdTe/ZnTe quantum rings (QRs) are investigated as functions of size and temperature using an eight-band strain-dependent k.p Hamiltonian. The size effects of diameter and height on the strain distributions around the QRs are studied. We find that the interband transition energy, defined as the energy difference between the ground electronic and the ground heavy-hole subbands, increases with the increasing QR inner diameter regardless of the temperature, while the interband energy decreases with the increasing QR height, This is attributed to the reduction of subband energies in both the conduction and the valence bands due to the strain effects. Our model, in the framework of the finite element method and the theory of elasticity of solids, shows a good agreement with the temperature-dependent photoluminescence measurement of the interband transition energies.展开更多
We investigate the band structure of a compressively strained In(Ga)As/In0.53Ga0.47As quantum well (QW) on an InP substrate using the eight-band k.p theory. Aiming at the emission wavelength around 2.33 μm, we di...We investigate the band structure of a compressively strained In(Ga)As/In0.53Ga0.47As quantum well (QW) on an InP substrate using the eight-band k.p theory. Aiming at the emission wavelength around 2.33 μm, we discuss the influences of temperature, strain and well width on the band structure and on the emission wavelength of the QW. The wavelength increases with the increase of temperature, strain and well width. Furthermore, we design an InAs /In0.53Ga0.47As QW with a well width of 4.1 nm emitting at 2.33 μm by optimizing the strain and the well width.展开更多
文摘Florogenesis is one of the most complicated and interesting processes in the nature. This process involves developmental, physiological and molecular events leading to transformation from vegetative to reproductive phase for optimal seed production and the continuation of species. The basic knowledge about flowering processes, male and female sexual systems support basic and applied research and breeding programs. Most of the onion varieties from India are short day varieties, more diverse than other exotic germplasm and useful as a source of new alleles for supporting breeding programs. The present investigation was focused to study for the first time florogenesis process by scanning electron study for the first time florogenesis process by scanning electron microscopy (SEM) and development of female gametophytes by light microscopy in order to acquire basic knowledge useful for optimizing in vitro process to produce gynogenic haploid to support and speed breeding program in short-day onion Allium cepa L. cv. Krishnapuram (KP) or Bangalore Rose. This study revealed that shoot primordium differentiated into inflorescence meristem in the month of December, while seeds were planted in the field in the September. The individual florets are preceded by a variying number of floral initials. The female gametophyte developed from chalazal side megaspore. The embryo sac development is a bisporic Allium type showing short-lived antipodals. The histological study suggests that the use of big or preanthesis flower buds with embryo sac for production of gynogenic haploids to support breeding program in onion cv. Krishnapuram (KP). However further studies are needed for confirmation of this observation.
文摘The feature of conduction band (CB) of Tensile-Strained Si(TS-Si) on a relaxed Si1-xGex substrate is systematically investigated, including the number of equivalent CB edge energy extrema, CB energy minima, the position of the extremal point, and effective mass. Based on an analysis of symmetry under strain, the number of equivalent CB edge energy extrema is presented; Using the K.P method with the help of perturbation theory, dispersion relation near minima of CB bottom energy, derived from the linear deformation potential theory, is determined, from which the parameters, namely, the position of the extremal point, and the longitudinal and transverse masses (m1^* and mt^*)are obtained.
基金Project supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF)the Ministry of Education,Science,and Technology,Korea (Grant No.2010-0024703)
文摘The electronic properties of CdTe/ZnTe quantum rings (QRs) are investigated as functions of size and temperature using an eight-band strain-dependent k.p Hamiltonian. The size effects of diameter and height on the strain distributions around the QRs are studied. We find that the interband transition energy, defined as the energy difference between the ground electronic and the ground heavy-hole subbands, increases with the increasing QR inner diameter regardless of the temperature, while the interband energy decreases with the increasing QR height, This is attributed to the reduction of subband energies in both the conduction and the valence bands due to the strain effects. Our model, in the framework of the finite element method and the theory of elasticity of solids, shows a good agreement with the temperature-dependent photoluminescence measurement of the interband transition energies.
基金Project supported by the '100 Talents Program' of Chinese Academy of Sciences,China
文摘We investigate the band structure of a compressively strained In(Ga)As/In0.53Ga0.47As quantum well (QW) on an InP substrate using the eight-band k.p theory. Aiming at the emission wavelength around 2.33 μm, we discuss the influences of temperature, strain and well width on the band structure and on the emission wavelength of the QW. The wavelength increases with the increase of temperature, strain and well width. Furthermore, we design an InAs /In0.53Ga0.47As QW with a well width of 4.1 nm emitting at 2.33 μm by optimizing the strain and the well width.