Pure K2Ti4O9 whiskers were prepared by KDC(Kneading-Drying-Calcination) method with TiO2 and K2CO3 as raw materials. The influences of TiO2/K2CO3 molar ratio(RT/K), calcination temperature(TC) and cooling proces...Pure K2Ti4O9 whiskers were prepared by KDC(Kneading-Drying-Calcination) method with TiO2 and K2CO3 as raw materials. The influences of TiO2/K2CO3 molar ratio(RT/K), calcination temperature(TC) and cooling process on phase composition and morphology of the whiskers were investigated by TG-DSC(thermo gravimetric-differential scanning calorimeter), XRD(X-ray diffraction), and SEM(scanning electron microscope). Pure K2Ti4O9 potassium titanate whiskers with large length-diameter ratio(r)(over 250) can be obtained at RT/K = 2.9 and TC = 950 ℃.展开更多
Myeloperoxidase (MPO) is a neutrophil enzyme that employs hydrogen peroxide (H2O2) to catalyze the oxidation of chloride (Cl–) to hypochlorous acid (HOCl). Accepted mechanism is based on rapid reaction of native MPO ...Myeloperoxidase (MPO) is a neutrophil enzyme that employs hydrogen peroxide (H2O2) to catalyze the oxidation of chloride (Cl–) to hypochlorous acid (HOCl). Accepted mechanism is based on rapid reaction of native MPO with H2O2to produce Compound I (MPO-I) which oxidizes Cl– through a 2e– transition generating MPO and HOCl. MPO-I also reacts with H2O2 to generate Compound II (MPO-II) which is inactive in 2e oxidation of Cl–. Nitrite ( NO2-) inhibits the 2e oxidation of Cl– by reaction with MPO-I through 1e transition generating MPO-II and nitrite radical. H2O2 consumption during steady- state catalysis was monitored amperometrically by a carbon fiber based H2O2-biosensor at 25oC. Results demonstrated that in absence of NO2- reactions were monophasic and rapid (complete H2O2 consumption occurs in 2- increases, reactions change to biphasic (rapid step followed by a slow step) and both steps have been inhibited by NO2- . A predictive kinetic model describing the inhibittory effect of NO2- was developed and applied to experimental results The model is based on the assumption that MPO–I cannot be detected during steady-state catalysis. Calculated rate constants are in agreement with those obtained from pre-steady state kinetic methods.展开更多
Cells need to appropriately balance transcriptional stability and adaptability in order to maintain their identities while responding robustly to various stimuli. Eukaryotic cells use an elegant "epigenetic"...Cells need to appropriately balance transcriptional stability and adaptability in order to maintain their identities while responding robustly to various stimuli. Eukaryotic cells use an elegant "epigenetic" system to achieve this functionality. "Epigenetics" is referred to as heritable information beyond the DNA sequence, including histone and DNA modifications, nc RNAs and other chromatin-related components. Here, we review the mechanisms of the epigenetic inheritance of a repressive chromatin state,with an emphasis on recent progress in the field. We emphasize that(i) epigenetic information is inherited in a relatively stable but imprecise fashion;(ii) multiple cis and trans factors are involved in the maintenance of epigenetic information during mitosis; and(iii) the maintenance of a repressive epigenetic state requires both recruitment and self-reinforcement mechanisms.These mechanisms crosstalk with each other and form interconnected feedback loops to shape a stable epigenetic system while maintaining certain degrees of flexibility.展开更多
基金Funded by the Natural Science Foundation Key Project of Hubei Province(No.2011CDA060)
文摘Pure K2Ti4O9 whiskers were prepared by KDC(Kneading-Drying-Calcination) method with TiO2 and K2CO3 as raw materials. The influences of TiO2/K2CO3 molar ratio(RT/K), calcination temperature(TC) and cooling process on phase composition and morphology of the whiskers were investigated by TG-DSC(thermo gravimetric-differential scanning calorimeter), XRD(X-ray diffraction), and SEM(scanning electron microscope). Pure K2Ti4O9 potassium titanate whiskers with large length-diameter ratio(r)(over 250) can be obtained at RT/K = 2.9 and TC = 950 ℃.
文摘Myeloperoxidase (MPO) is a neutrophil enzyme that employs hydrogen peroxide (H2O2) to catalyze the oxidation of chloride (Cl–) to hypochlorous acid (HOCl). Accepted mechanism is based on rapid reaction of native MPO with H2O2to produce Compound I (MPO-I) which oxidizes Cl– through a 2e– transition generating MPO and HOCl. MPO-I also reacts with H2O2 to generate Compound II (MPO-II) which is inactive in 2e oxidation of Cl–. Nitrite ( NO2-) inhibits the 2e oxidation of Cl– by reaction with MPO-I through 1e transition generating MPO-II and nitrite radical. H2O2 consumption during steady- state catalysis was monitored amperometrically by a carbon fiber based H2O2-biosensor at 25oC. Results demonstrated that in absence of NO2- reactions were monophasic and rapid (complete H2O2 consumption occurs in 2- increases, reactions change to biphasic (rapid step followed by a slow step) and both steps have been inhibited by NO2- . A predictive kinetic model describing the inhibittory effect of NO2- was developed and applied to experimental results The model is based on the assumption that MPO–I cannot be detected during steady-state catalysis. Calculated rate constants are in agreement with those obtained from pre-steady state kinetic methods.
基金supported by the National Natural Science Foundation of China (31761163001, 31701128)
文摘Cells need to appropriately balance transcriptional stability and adaptability in order to maintain their identities while responding robustly to various stimuli. Eukaryotic cells use an elegant "epigenetic" system to achieve this functionality. "Epigenetics" is referred to as heritable information beyond the DNA sequence, including histone and DNA modifications, nc RNAs and other chromatin-related components. Here, we review the mechanisms of the epigenetic inheritance of a repressive chromatin state,with an emphasis on recent progress in the field. We emphasize that(i) epigenetic information is inherited in a relatively stable but imprecise fashion;(ii) multiple cis and trans factors are involved in the maintenance of epigenetic information during mitosis; and(iii) the maintenance of a repressive epigenetic state requires both recruitment and self-reinforcement mechanisms.These mechanisms crosstalk with each other and form interconnected feedback loops to shape a stable epigenetic system while maintaining certain degrees of flexibility.