Various undercoolings 14-232 K of bulk K4169 superalloys were obtained by the method of molten glass fluxing combined with superheating cycling and the mechanical properties of undercooled K4169 with as-solidified sta...Various undercoolings 14-232 K of bulk K4169 superalloys were obtained by the method of molten glass fluxing combined with superheating cycling and the mechanical properties of undercooled K4169 with as-solidified state were tested. Microstructures and phases composition in undercooled bulk K4169 superalloy were identified by transmission electron microscope (TEM), scanning electron microscope (SEM) and optical microscopy (OM). The morphology of dendrites, grain size and intergranular phase all change with the increased undercooling. Meanwhile, the relationship between microstructure of undercooled K4169 superalloy and tensile properties was investigated. The experimental results show that the uniform distribution of Laves phase and the decrease of grain size and intergranular phase content are favorable for the improvement of mechanical properties. The maximum tensile strength and elongation obtained at undercooling of 232 K are 932.2 MPa and 6.5%, respectively.展开更多
The effects of rare earth element Y on the purification of K4169 superalloy during vacuum induction melting were investigated at different superheating temperatures. The corresponding interaction mechanisms were also ...The effects of rare earth element Y on the purification of K4169 superalloy during vacuum induction melting were investigated at different superheating temperatures. The corresponding interaction mechanisms were also clarified. Results showed that the addition of Y remarkably promoted the purification effect on the K4169 melt. The contents of O and S in the K4169 as-cast alloy ingots after purification were 3–4 and 8–10 ppm, respectively. The degrees of deoxidation and desulfurization increased to 50% and 57%, respectively, upon the addition of 0.1 wt% Y. The yttrium-rich phase that precipitated at the grain boundary blocked the diffusion of C and the accumulation of S, thereby contributing to the purification of the alloy.展开更多
In order to investigate the effect of Zr addition on the precipitations of K4169 superalloy, a manual electric arc furnace was used to prepare the superalloy with different Zr addition from 0.03wt.% to 0.07wt%. After ...In order to investigate the effect of Zr addition on the precipitations of K4169 superalloy, a manual electric arc furnace was used to prepare the superalloy with different Zr addition from 0.03wt.% to 0.07wt%. After standard heat treatment and long-time aging, the microstructures of the alloys were observed using XRD, SEM and TEM. The results show that Zr not only inhibits the precipitation of Laves phase at the grain boundary, but also significantly promotes the precipitation of earlobe-like γ' and γ" phases. After long time aging at 680 ℃ for 500 h, the γ" phase grows up obviously and forms a γ'/γ" clad microstructure when the Zr addition is 0.03 wt.%. A large number of fine orbed γ' particles precipitate in the grains and some γ" phase transforms to disk-like c5 phase when the Zr addition increases to 0.05wt.%. The nano-polycrystalline γ' phase precipitates in the grains and there is a little δ phase when the Zr addition is 0.07wt.%. As the Zr addition increases, the amount of Laves phase at the grain boundary decreases at first, and then increases and forms flaky morphology.展开更多
基金Project(2011CB610406)supported by the National Basic Research Program of China
文摘Various undercoolings 14-232 K of bulk K4169 superalloys were obtained by the method of molten glass fluxing combined with superheating cycling and the mechanical properties of undercooled K4169 with as-solidified state were tested. Microstructures and phases composition in undercooled bulk K4169 superalloy were identified by transmission electron microscope (TEM), scanning electron microscope (SEM) and optical microscopy (OM). The morphology of dendrites, grain size and intergranular phase all change with the increased undercooling. Meanwhile, the relationship between microstructure of undercooled K4169 superalloy and tensile properties was investigated. The experimental results show that the uniform distribution of Laves phase and the decrease of grain size and intergranular phase content are favorable for the improvement of mechanical properties. The maximum tensile strength and elongation obtained at undercooling of 232 K are 932.2 MPa and 6.5%, respectively.
基金financially supported by the National Science & Technology Pillar Program of China (No. 2013BAB11B04)the National Natural Science Foundation of China (Nos. 51404017 and 51604014)
文摘The effects of rare earth element Y on the purification of K4169 superalloy during vacuum induction melting were investigated at different superheating temperatures. The corresponding interaction mechanisms were also clarified. Results showed that the addition of Y remarkably promoted the purification effect on the K4169 melt. The contents of O and S in the K4169 as-cast alloy ingots after purification were 3–4 and 8–10 ppm, respectively. The degrees of deoxidation and desulfurization increased to 50% and 57%, respectively, upon the addition of 0.1 wt% Y. The yttrium-rich phase that precipitated at the grain boundary blocked the diffusion of C and the accumulation of S, thereby contributing to the purification of the alloy.
基金financially supported by the Natural Science Foundation of Gansu Province,China (No.3ZS042-B25-028)
文摘In order to investigate the effect of Zr addition on the precipitations of K4169 superalloy, a manual electric arc furnace was used to prepare the superalloy with different Zr addition from 0.03wt.% to 0.07wt%. After standard heat treatment and long-time aging, the microstructures of the alloys were observed using XRD, SEM and TEM. The results show that Zr not only inhibits the precipitation of Laves phase at the grain boundary, but also significantly promotes the precipitation of earlobe-like γ' and γ" phases. After long time aging at 680 ℃ for 500 h, the γ" phase grows up obviously and forms a γ'/γ" clad microstructure when the Zr addition is 0.03 wt.%. A large number of fine orbed γ' particles precipitate in the grains and some γ" phase transforms to disk-like c5 phase when the Zr addition increases to 0.05wt.%. The nano-polycrystalline γ' phase precipitates in the grains and there is a little δ phase when the Zr addition is 0.07wt.%. As the Zr addition increases, the amount of Laves phase at the grain boundary decreases at first, and then increases and forms flaky morphology.