In this paper we mainly concern the persistence of invariant tori in generalized Hamiltonian systems. Here the generalized Hamiltonian systems refer to the systems which may admit a distinct number of action and angle...In this paper we mainly concern the persistence of invariant tori in generalized Hamiltonian systems. Here the generalized Hamiltonian systems refer to the systems which may admit a distinct number of action and angle variables. In particular, system under consideration can be odd dimensional. Under the Riissmann type non-degenerate condition, we proved that the majority of the lower-dimension invariant tori of the integrable systems in generalized Hamiltonian system are persistent under small perturbation. The surviving lower-dimensional tori might be elliptic, hyperbolic, or of mixed type.展开更多
By exploiting the contact Hamiltonian dynamics(T*M×R,Φ_(t))around the Aubry set of contact Hamiltonian systems,we provide a relation among the Mather set,theΦ_(t)-recurrent set,the strongly static set,the Aubry...By exploiting the contact Hamiltonian dynamics(T*M×R,Φ_(t))around the Aubry set of contact Hamiltonian systems,we provide a relation among the Mather set,theΦ_(t)-recurrent set,the strongly static set,the Aubry set,the Ma?éset,and theΦ_(t)-non-wandering set.Moreover,we consider the strongly static set,as a new flow-invariant set between the Mather set and the Aubry set in the strictly increasing case.We show that this set plays an essential role in the representation of certain minimal forward weak Kolmogorov-Arnold-Moser(KAM)solutions and the existence of transitive orbits around the Aubry set.展开更多
In this paper, we study the persistence of lower dimensional tori for random Hamiltonian systems, which shows that majority of the unperturbed tori persist as Cantor fragments of lower dimensional ones under small per...In this paper, we study the persistence of lower dimensional tori for random Hamiltonian systems, which shows that majority of the unperturbed tori persist as Cantor fragments of lower dimensional ones under small perturbation. Using this result, we can describe the stability of the non-autonomous dynamic systems.展开更多
Considering a decomposition R2N=A⊕B of R2N , we prove in this work, the existence of at least (1+dimA) geometrically distinct periodic solutions for the first-order Hamiltonian system Jx'(t)+H'(t,x(t))+e(t)=0...Considering a decomposition R2N=A⊕B of R2N , we prove in this work, the existence of at least (1+dimA) geometrically distinct periodic solutions for the first-order Hamiltonian system Jx'(t)+H'(t,x(t))+e(t)=0 when the Hamiltonian H(t,u+v) is periodic in (t,u) and its growth at infinity in v is at most like or faster than |v|a, 0≤ae is a forcing term. For the proof, we use the Least Action Principle and a Generalized Saddle Point Theorem.展开更多
In this paper the energy diffusion controlled reaction rate in dissipative Hamiltonian systems is investigated by using the stochastic averaging method for quasi Hamiltonian systems. The boundary value problem of mean...In this paper the energy diffusion controlled reaction rate in dissipative Hamiltonian systems is investigated by using the stochastic averaging method for quasi Hamiltonian systems. The boundary value problem of mean first- passage time (MFPT) of averaged system is formulated and the energy diffusion controlled reaction rate is obtained as the inverse of MFPT. The energy diffusion controlled reaction rate in the classical Kramers bistable potential and in a two-dimensional bistable potential with a heat bath are obtained by using the proposed approach respectively. The obtained results are then compared with those from Monte Carlo simulation of original systems and from the classical Kraraers theory. It is shown that the reaction rate obtained by using the proposed approach agrees well with that from Monte Carlo simulation and is more accurate than the classical Kramers rate.展开更多
In this paper we prove the persistence of hyperbolic invariant tori in generalized Hamiltonian systems, which may admit a distinct number of action and angle variables. The systems under consideration can be odd dimen...In this paper we prove the persistence of hyperbolic invariant tori in generalized Hamiltonian systems, which may admit a distinct number of action and angle variables. The systems under consideration can be odd dimensional in tangent direction. Our results generalize the well-known results of Graft and Zehnder in standard Hamiltonians. In our case the unperturbed Hamiltonian systems may be degenerate. We also consider the persistence problem of hyperbolic tori on submanifolds.展开更多
In this paper, we investigate the eigenvalue problem of forward-backward doubly stochastic dii^erential equations with boundary value conditions. We show that this problem can be represented as an eigenvalue problem o...In this paper, we investigate the eigenvalue problem of forward-backward doubly stochastic dii^erential equations with boundary value conditions. We show that this problem can be represented as an eigenvalue problem of a bounded continuous compact operator. Hence using the famous Hilbert-Schmidt spectrum theory, we can characterize the eigenvalues exactly.展开更多
In this paper,we prove that for each positive k≡1 mod m there exists a P-symmetric kmτ-periodic solution xk for asymptotically linear mτ-periodic Hamiltonian systems,which are nonautonomous and endowed with a P-sym...In this paper,we prove that for each positive k≡1 mod m there exists a P-symmetric kmτ-periodic solution xk for asymptotically linear mτ-periodic Hamiltonian systems,which are nonautonomous and endowed with a P-symmetry.If the P-symmetric Hamiltonian function is semi-positive,one can prove,under a new iteration inequality of the Maslov-type P-index,that xk_(1) and xk_(2) are geometrically distinct for k_(1)/k_(2)≥(2n+1)m+1;and xk_(1),xk_(2) are geometrically distinct for k_(1)/k_(2)≥m+1 provided xk_(1) is non-degenerate.展开更多
A class of weaker nondegeneracy conditions is given and an existence theorem of invariant tori is prove n for small perturbations of degenerate integrable infinite dimensional Hamiltonian systems under the weaker nond...A class of weaker nondegeneracy conditions is given and an existence theorem of invariant tori is prove n for small perturbations of degenerate integrable infinite dimensional Hamiltonian systems under the weaker nondegeneracy conditions. The measure estimates of the parameter set are also given for which invariant tori exist. It is valuable to point out that by the motivation of finite dimensional situation the nondegeneracy conditions may be the weakest. Mainly KAM machine is used to prove the existence of invariant tori. The measure estimates for small divisor conditions, on which the measure estimates of the parameter set are based, will be given in the second paper.展开更多
In this paper, we study the persistence of invariant tori of integrable Hamiltonian systems satisfying Rssmann's non-degeneracy condition when symplectic integrators are applied to them. Meanwhile, we give an esti...In this paper, we study the persistence of invariant tori of integrable Hamiltonian systems satisfying Rssmann's non-degeneracy condition when symplectic integrators are applied to them. Meanwhile, we give an estimate of the measure of the set occupied by the invariant tori in the phase space. On an invariant torus,numerical solutions are quasi-periodic with a diophantine frequency vector of time step size dependence. These results generalize Shang's previous ones(1999, 2000), where the non-degeneracy condition is assumed in the sense of Kolmogorov.展开更多
In this paper, we develop the local linking theorem given by Li and Willein by replacing the Palais-Smale condition with a Cerami one, and apply it to the study of the existence of periodic solutions of the nonautonom...In this paper, we develop the local linking theorem given by Li and Willein by replacing the Palais-Smale condition with a Cerami one, and apply it to the study of the existence of periodic solutions of the nonautonomous second order Hamiltonian systems (H) ü+A(t)u+∨V(t, u)=0, u∈R^N, t∈R. We handle the case of superquadratic nonlinearities which differ from those used previously. Our results extend the theorems given by Li and Willem.展开更多
In the last years much progress has been achieved in KAM theory concerning bifurcation of quasi-periodic solutions of Hamiltonian or reversible partial differential equations.We provide an overview of the state of the...In the last years much progress has been achieved in KAM theory concerning bifurcation of quasi-periodic solutions of Hamiltonian or reversible partial differential equations.We provide an overview of the state of the art in this field.展开更多
It this paper we obtain existence and bifurcation theorems for homoclinic orbits in three-dimeensional,time dependent and independent,perturbations of generalized Hamiltonian differential equations defined on three-d...It this paper we obtain existence and bifurcation theorems for homoclinic orbits in three-dimeensional,time dependent and independent,perturbations of generalized Hamiltonian differential equations defined on three-dimensional Poisson manifolds.Thed we apply them to a truncated spectral model of the quasi-geostrophic flow on a cyclic β-plane.展开更多
Many physical systems can be modeled as quasi-Hamiltonian systems and the stochastic averaging method for quasi-Hamiltonian systems can be applied to yield reasonable approximate response sta-tistics.In the present pa...Many physical systems can be modeled as quasi-Hamiltonian systems and the stochastic averaging method for quasi-Hamiltonian systems can be applied to yield reasonable approximate response sta-tistics.In the present paper,the basic idea and procedure of the stochastic averaging method for quasi Hamiltonian systems are briefly introduced.The applications of the stochastic averaging method in studying the dynamics of active Brownian particles,the reaction rate theory,the dynamics of breathing and denaturation of DNA,and the Fermi resonance and its effect on the mean transition time are reviewed.展开更多
In this paper we reformulate a Lyapunov center theorem of infinite dimensional Hamiltonian systems arising from PDEs.The proof is based on a modified KAM iteration for periodic case.
In this paper, we study the nonperiodic first-order Hamiltonian system u = JL(t)u + JH'(t,u), where HεCl(RxR2n). With some assumptions on L, the corresponding Hamiltonianoperator has only discrete spectrum. B...In this paper, we study the nonperiodic first-order Hamiltonian system u = JL(t)u + JH'(t,u), where HεCl(RxR2n). With some assumptions on L, the corresponding Hamiltonianoperator has only discrete spectrum. By using the index theory for self-adjoint operator equation, we establish the existence of multiple homoclinic orbits for the asymptotically quadratic nonlinearty satisfying some twist conditions between infinity and origin.展开更多
基金Partially supported by the Talent Foundation (522-7901-01140418) of Northwest A & FUniversity.
文摘In this paper we mainly concern the persistence of invariant tori in generalized Hamiltonian systems. Here the generalized Hamiltonian systems refer to the systems which may admit a distinct number of action and angle variables. In particular, system under consideration can be odd dimensional. Under the Riissmann type non-degenerate condition, we proved that the majority of the lower-dimension invariant tori of the integrable systems in generalized Hamiltonian system are persistent under small perturbation. The surviving lower-dimensional tori might be elliptic, hyperbolic, or of mixed type.
基金supported by National Natural Science Foundation of China(Grant No.12122109)。
文摘By exploiting the contact Hamiltonian dynamics(T*M×R,Φ_(t))around the Aubry set of contact Hamiltonian systems,we provide a relation among the Mather set,theΦ_(t)-recurrent set,the strongly static set,the Aubry set,the Ma?éset,and theΦ_(t)-non-wandering set.Moreover,we consider the strongly static set,as a new flow-invariant set between the Mather set and the Aubry set in the strictly increasing case.We show that this set plays an essential role in the representation of certain minimal forward weak Kolmogorov-Arnold-Moser(KAM)solutions and the existence of transitive orbits around the Aubry set.
基金Partially supported by the SFC(10531050,10225107)of Chinathe SRFDP(20040183030)the 985 program of Jilin University
文摘In this paper, we study the persistence of lower dimensional tori for random Hamiltonian systems, which shows that majority of the unperturbed tori persist as Cantor fragments of lower dimensional ones under small perturbation. Using this result, we can describe the stability of the non-autonomous dynamic systems.
文摘Considering a decomposition R2N=A⊕B of R2N , we prove in this work, the existence of at least (1+dimA) geometrically distinct periodic solutions for the first-order Hamiltonian system Jx'(t)+H'(t,x(t))+e(t)=0 when the Hamiltonian H(t,u+v) is periodic in (t,u) and its growth at infinity in v is at most like or faster than |v|a, 0≤ae is a forcing term. For the proof, we use the Least Action Principle and a Generalized Saddle Point Theorem.
基金Project supported by the National Natural Science Foundation of China (Key Grant No 10332030), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No 20060335125) and the National Science Foundation for Post-doctoral Scientists of China (Grant No 20060390338).
文摘In this paper the energy diffusion controlled reaction rate in dissipative Hamiltonian systems is investigated by using the stochastic averaging method for quasi Hamiltonian systems. The boundary value problem of mean first- passage time (MFPT) of averaged system is formulated and the energy diffusion controlled reaction rate is obtained as the inverse of MFPT. The energy diffusion controlled reaction rate in the classical Kramers bistable potential and in a two-dimensional bistable potential with a heat bath are obtained by using the proposed approach respectively. The obtained results are then compared with those from Monte Carlo simulation of original systems and from the classical Kraraers theory. It is shown that the reaction rate obtained by using the proposed approach agrees well with that from Monte Carlo simulation and is more accurate than the classical Kramers rate.
文摘In this paper we prove the persistence of hyperbolic invariant tori in generalized Hamiltonian systems, which may admit a distinct number of action and angle variables. The systems under consideration can be odd dimensional in tangent direction. Our results generalize the well-known results of Graft and Zehnder in standard Hamiltonians. In our case the unperturbed Hamiltonian systems may be degenerate. We also consider the persistence problem of hyperbolic tori on submanifolds.
基金The NSF (10601019 and J0630104) of ChinaChinese Postdoctoral Science Foundation and 985 Program of Jilin University.
文摘In this paper, we investigate the eigenvalue problem of forward-backward doubly stochastic dii^erential equations with boundary value conditions. We show that this problem can be represented as an eigenvalue problem of a bounded continuous compact operator. Hence using the famous Hilbert-Schmidt spectrum theory, we can characterize the eigenvalues exactly.
基金partially supported by National Key R&D Program of China(Grant No.2020YFA0713300)NSFC Grants(Grant Nos.17190271 and 11171341)+2 种基金LPMC of Nankai Universitypartially supported by the NSFC Grants(Grant Nos.12171253 and 17190271)LPMC of Nankai University。
文摘In this paper,we prove that for each positive k≡1 mod m there exists a P-symmetric kmτ-periodic solution xk for asymptotically linear mτ-periodic Hamiltonian systems,which are nonautonomous and endowed with a P-symmetry.If the P-symmetric Hamiltonian function is semi-positive,one can prove,under a new iteration inequality of the Maslov-type P-index,that xk_(1) and xk_(2) are geometrically distinct for k_(1)/k_(2)≥(2n+1)m+1;and xk_(1),xk_(2) are geometrically distinct for k_(1)/k_(2)≥m+1 provided xk_(1) is non-degenerate.
基金the National Natural Science Foundation of China.
文摘A class of weaker nondegeneracy conditions is given and an existence theorem of invariant tori is prove n for small perturbations of degenerate integrable infinite dimensional Hamiltonian systems under the weaker nondegeneracy conditions. The measure estimates of the parameter set are also given for which invariant tori exist. It is valuable to point out that by the motivation of finite dimensional situation the nondegeneracy conditions may be the weakest. Mainly KAM machine is used to prove the existence of invariant tori. The measure estimates for small divisor conditions, on which the measure estimates of the parameter set are based, will be given in the second paper.
基金supported by National Natural Science Foundation of China(Grant No.11671392)
文摘In this paper, we study the persistence of invariant tori of integrable Hamiltonian systems satisfying Rssmann's non-degeneracy condition when symplectic integrators are applied to them. Meanwhile, we give an estimate of the measure of the set occupied by the invariant tori in the phase space. On an invariant torus,numerical solutions are quasi-periodic with a diophantine frequency vector of time step size dependence. These results generalize Shang's previous ones(1999, 2000), where the non-degeneracy condition is assumed in the sense of Kolmogorov.
基金Supported by NSFC(10471075)NSFSP(Y2003A01)NSFQN(xj0503)
文摘In this paper, we develop the local linking theorem given by Li and Willein by replacing the Palais-Smale condition with a Cerami one, and apply it to the study of the existence of periodic solutions of the nonautonomous second order Hamiltonian systems (H) ü+A(t)u+∨V(t, u)=0, u∈R^N, t∈R. We handle the case of superquadratic nonlinearities which differ from those used previously. Our results extend the theorems given by Li and Willem.
基金supported by PRIN 2015 Variational methods with applications to problems in mathematical physics and geometry
文摘In the last years much progress has been achieved in KAM theory concerning bifurcation of quasi-periodic solutions of Hamiltonian or reversible partial differential equations.We provide an overview of the state of the art in this field.
文摘It this paper we obtain existence and bifurcation theorems for homoclinic orbits in three-dimeensional,time dependent and independent,perturbations of generalized Hamiltonian differential equations defined on three-dimensional Poisson manifolds.Thed we apply them to a truncated spectral model of the quasi-geostrophic flow on a cyclic β-plane.
基金Supported by the National Natural Science Foundation of China (Grant Nos. 10772159 and 10802074)the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20060335125)the Zhejiang Provincial Natural Science Foundation of China (Grant No. Y7080070)
文摘Many physical systems can be modeled as quasi-Hamiltonian systems and the stochastic averaging method for quasi-Hamiltonian systems can be applied to yield reasonable approximate response sta-tistics.In the present paper,the basic idea and procedure of the stochastic averaging method for quasi Hamiltonian systems are briefly introduced.The applications of the stochastic averaging method in studying the dynamics of active Brownian particles,the reaction rate theory,the dynamics of breathing and denaturation of DNA,and the Fermi resonance and its effect on the mean transition time are reviewed.
基金This study was funded by the National Natural Science Foundation of China(Nos.11871146 and 11671077).
文摘In this paper we reformulate a Lyapunov center theorem of infinite dimensional Hamiltonian systems arising from PDEs.The proof is based on a modified KAM iteration for periodic case.
基金Supported by the Jiangsu Planned Projects for Postdoctoral Research Funds(Grant No.1302012B)
文摘In this paper, we study the nonperiodic first-order Hamiltonian system u = JL(t)u + JH'(t,u), where HεCl(RxR2n). With some assumptions on L, the corresponding Hamiltonianoperator has only discrete spectrum. By using the index theory for self-adjoint operator equation, we establish the existence of multiple homoclinic orbits for the asymptotically quadratic nonlinearty satisfying some twist conditions between infinity and origin.