期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
Persistence of Hyperbolic Tori in Generalized Hamiltonian Systems 被引量:1
1
作者 柳振鑫 伊贺达赉 黄庆道 《Northeastern Mathematical Journal》 CSCD 2005年第4期447-464,共18页
In this paper we prove the persistence of hyperbolic invariant tori in generalized Hamiltonian systems, which may admit a distinct number of action and angle variables. The systems under consideration can be odd dimen... In this paper we prove the persistence of hyperbolic invariant tori in generalized Hamiltonian systems, which may admit a distinct number of action and angle variables. The systems under consideration can be odd dimensional in tangent direction. Our results generalize the well-known results of Graft and Zehnder in standard Hamiltonians. In our case the unperturbed Hamiltonian systems may be degenerate. We also consider the persistence problem of hyperbolic tori on submanifolds. 展开更多
关键词 hyperbolic invariant tori kam theorem generalized hamiltonian system
下载PDF
A KAM-type Theorem for Generalized Hamiltonian Systems
2
作者 Liu BAI-FENG ZHU WEN-ZHUANG XU LE-SHUN 《Communications in Mathematical Research》 CSCD 2009年第1期37-52,共16页
In this paper we mainly concern the persistence of invariant tori in generalized Hamiltonian systems. Here the generalized Hamiltonian systems refer to the systems which may admit a distinct number of action and angle... In this paper we mainly concern the persistence of invariant tori in generalized Hamiltonian systems. Here the generalized Hamiltonian systems refer to the systems which may admit a distinct number of action and angle variables. In particular, system under consideration can be odd dimensional. Under the Riissmann type non-degenerate condition, we proved that the majority of the lower-dimension invariant tori of the integrable systems in generalized Hamiltonian system are persistent under small perturbation. The surviving lower-dimensional tori might be elliptic, hyperbolic, or of mixed type. 展开更多
关键词 kam theory invariant tori generalized hamiltonian system
下载PDF
Numerical invariant tori of symplectic integrators for integrable Hamiltonian systems 被引量:3
3
作者 Zhaodong Ding Zaijiu Shang 《Science China Mathematics》 SCIE CSCD 2018年第9期1567-1588,共22页
In this paper, we study the persistence of invariant tori of integrable Hamiltonian systems satisfying Rssmann's non-degeneracy condition when symplectic integrators are applied to them. Meanwhile, we give an esti... In this paper, we study the persistence of invariant tori of integrable Hamiltonian systems satisfying Rssmann's non-degeneracy condition when symplectic integrators are applied to them. Meanwhile, we give an estimate of the measure of the set occupied by the invariant tori in the phase space. On an invariant torus,numerical solutions are quasi-periodic with a diophantine frequency vector of time step size dependence. These results generalize Shang's previous ones(1999, 2000), where the non-degeneracy condition is assumed in the sense of Kolmogorov. 展开更多
关键词 hamiltonian systems symplectic integrators kam theory invariant tori twist symplectic mappings Rüissmann's non-degeneracy
原文传递
KAM Type-Theorem for Lower Dimensional Tori in Random Hamiltonian Systems
4
作者 LI YONG XU LU 《Communications in Mathematical Research》 CSCD 2011年第1期81-96,共16页
In this paper, we study the persistence of lower dimensional tori for random Hamiltonian systems, which shows that majority of the unperturbed tori persist as Cantor fragments of lower dimensional ones under small per... In this paper, we study the persistence of lower dimensional tori for random Hamiltonian systems, which shows that majority of the unperturbed tori persist as Cantor fragments of lower dimensional ones under small perturbation. Using this result, we can describe the stability of the non-autonomous dynamic systems. 展开更多
关键词 random hamiltonian system kam type theorem Cantor fragment of invariant tori
下载PDF
A KAM theorem of degenerate infinite dimensional Hamiltonian systems (II) 被引量:2
5
作者 徐君祥 仇庆久 尤建功 《Science China Mathematics》 SCIE 1996年第4期372-383,共12页
A class of weaker nondegeneracy conditions is given and an existence theorem of invariant tori is prove n for small perturbations of degenerate integrable infinite dimensional Hamiltonian systems under the weaker nond... A class of weaker nondegeneracy conditions is given and an existence theorem of invariant tori is prove n for small perturbations of degenerate integrable infinite dimensional Hamiltonian systems under the weaker nondegeneracy conditions. The measure estimates of the parameter set are also given for which invariant tori exist. It is valuable to point out that by the motivation of finite dimensional situation the nondegeneracy conditions may be the weakest. Mainly KAM machine is used to prove the existence of invariant tori. The measure estimates for small divisor conditions, on which the measure estimates of the parameter set are based, will be given in the second paper. 展开更多
关键词 hamiltonian systems perturbation invariant tori small DIVISOR conditions kam iteration.
原文传递
陀螺仪运动的复杂性
6
作者 胡志兴 管克英 《北京航空航天大学学报》 EI CAS CSCD 北大核心 1999年第5期596-600,共5页
建立了外环轴水平放置的重力对称陀螺仪的运动方程.并将陀螺仪转子的质心位置作为扰动, 在一定条件下, 首先研究了自由陀螺仪的运动, 并给出力学意义解释; 然后利用Melnikov 方法和KAM理论研究了非自由陀螺仪的运动.... 建立了外环轴水平放置的重力对称陀螺仪的运动方程.并将陀螺仪转子的质心位置作为扰动, 在一定条件下, 首先研究了自由陀螺仪的运动, 并给出力学意义解释; 然后利用Melnikov 方法和KAM理论研究了非自由陀螺仪的运动.研究结果表明: 在陀螺仪转子的质心与支架中心不重合且充分接近, 或陀螺仪能量充分大时, 陀螺仪的运动出现Smale 马蹄意义下的混沌; 同时它的Hamiltonian 展开更多
关键词 陀螺仪 重力 运动方程 混沌 kam理论
下载PDF
一类转动系统中质点的不变环面运动存在性问题
7
作者 王璟 谢建华 乐源 《西南交通大学学报》 EI CSCD 北大核心 2017年第5期1015-1019,共5页
为研究可积哈密顿系统的不变环面在小扰动下的保持性问题,建立了极坐标系下圆盘转动系统的哈密顿方程.首先,通过能量守恒的初积分将两自由度系统转化为二阶状态变量方程形式的单自由度系统;其次,在此基础上,利用KAM(Kolmogorov-Arnold-M... 为研究可积哈密顿系统的不变环面在小扰动下的保持性问题,建立了极坐标系下圆盘转动系统的哈密顿方程.首先,通过能量守恒的初积分将两自由度系统转化为二阶状态变量方程形式的单自由度系统;其次,在此基础上,利用KAM(Kolmogorov-Arnold-Moser)定理证明了不变环面的存在性;最后,对圆盘转动系统的动力学特性进行了数值模拟,结果表明:系统的时程曲线是周期的,相图稠密环绕,庞加莱映射为一条闭曲线;系统做拟周期运动,可积哈密顿系统的不变环面在小扰动下仍然存在,庞加莱映射的闭曲线对应着系统的KAM不变环面. 展开更多
关键词 哈密顿系统 kam理论 不变环面
下载PDF
陀螺仪运动的混沌与KAM理论 被引量:3
8
作者 胡志兴 管克英 《应用数学学报》 CSCD 北大核心 2000年第2期212-220,共9页
本文建立了外环轴水平放置的重力对称陀螺仪的运动方程.将非自由陀螺仪转子的质心位置作为扰动,利用Melnikov方法和KAM理论研究了陀螺仪的运动.研究结果表明:在陀螺仪转子的质心与支架中心不重合且充分接近时,或陀螺仪... 本文建立了外环轴水平放置的重力对称陀螺仪的运动方程.将非自由陀螺仪转子的质心位置作为扰动,利用Melnikov方法和KAM理论研究了陀螺仪的运动.研究结果表明:在陀螺仪转子的质心与支架中心不重合且充分接近时,或陀螺仪能量充分大时,陀螺仪运动的Poincare映射既出现Smale马蹄意义下的混沌,又存在KAM不变环面和不变闭曲线. 展开更多
关键词 重力对称陀螺仪 运动 导航系统 kam理论
原文传递
无穷维可逆系统的不变环面的保持性
9
作者 黄鹏 《数学学报(中文版)》 CSCD 北大核心 2024年第6期1207-1220,共14页
本文研究了如下系统{(x)=ω+y+f(x,y),(y)=g(x,y)的不变环面的保持性问题,其中x ∈ T^(Λ),y ∈ R^(Λ),集合Λ是整数集合Z的可数子集,频率ω=(…,ωλ,…)λ∈Λ ∈ R^(Λ)是双边无穷有理不相关序列,也就是说,频率ω=(...,ωλ的任意... 本文研究了如下系统{(x)=ω+y+f(x,y),(y)=g(x,y)的不变环面的保持性问题,其中x ∈ T^(Λ),y ∈ R^(Λ),集合Λ是整数集合Z的可数子集,频率ω=(…,ωλ,…)λ∈Λ ∈ R^(Λ)是双边无穷有理不相关序列,也就是说,频率ω=(...,ωλ的任意有限部分都有理不相关,扰动项f,g是实解析函数.我们还假设上述系统关于对合M:(x,y)(→)(-x,y)是可逆的.由KAM方法,证明了上述无穷维可逆系统的不变环面的保持性. 展开更多
关键词 不变环面 kam理论 无穷维可逆系统
原文传递
Analytic intermediate dimensional elliptic tori for the planetary many-body problem
10
作者 YAN DongFeng 《Science China Mathematics》 SCIE 2014年第7期1487-1504,共18页
In our context,the planetary many-body problem consists of studying the motion of(n+1)-bodies under the mutual attraction of gravitation,where n planets move around a massive central body,the Sun.We establish the exis... In our context,the planetary many-body problem consists of studying the motion of(n+1)-bodies under the mutual attraction of gravitation,where n planets move around a massive central body,the Sun.We establish the existence of real analytic lower dimensional elliptic invariant tori with intermediate dimension N lies between n and 3n-1 for the spatial planetary many-body problem.Based on a degenerate KolmogorovArnold-Moser(abbr.KAM)theorem proved by Bambusi et al.(2011),Berti and Biasco(2011),we manage to handle the difficulties caused by the degeneracy of this real analytic system. 展开更多
关键词 spatial planetary many-body problem nearly integrable hamiltonian systems kam theorem quasi-periodic orbits elliptic invariant tori
原文传递
有限维和无穷维空间上的KAM理论 被引量:4
11
作者 尤建功 耿建生 徐君祥 《中国科学:数学》 CSCD 北大核心 2017年第1期77-96,共20页
Kolmogorov-Arnold-Moser(KAM)理论是20世纪最重要的数学成就之一.近年来,很多数学和物理分支中,如天体力学、凝聚态物理、动力系统、偏微分方程、数学物理和算子谱理论,出现了形形色色与KAM相关但经典KAM理论不能解决的问题,刺激了KAM... Kolmogorov-Arnold-Moser(KAM)理论是20世纪最重要的数学成就之一.近年来,很多数学和物理分支中,如天体力学、凝聚态物理、动力系统、偏微分方程、数学物理和算子谱理论,出现了形形色色与KAM相关但经典KAM理论不能解决的问题,刺激了KAM理论和方法的进一步发展.本文对有限维和无穷维KAM理论的最新研究成果给出一个简要的综述(并不很全面),内容包括KAM理论中的非退化条件、低维不变环面及其有关Hamilton偏微分方程的KAM定理. 展开更多
关键词 kam理论 HAMILTON系统 不变环面 小分母 非退化条件 Hamilton偏微分方程
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部