Wigmore’s charts and Bayesian networks are used to represent graphically the construction of arguments and to evaluate them. KAOS is a goal oriented requirements analysis method that enables the analysts to capture r...Wigmore’s charts and Bayesian networks are used to represent graphically the construction of arguments and to evaluate them. KAOS is a goal oriented requirements analysis method that enables the analysts to capture requirements through the realization of the business goals. However, KAOS does not have inbuilt mechanism for evaluating these goals and the inferring process. This paper proposes a method for evaluating KAOS models through the extension of Wigmore’s model with features of Bayesian networks.展开更多
Gibberellin(GA)functions in plant growth and development.However,genes involved in the biosynthesis and regulation of GA in crop plants are poorly understood.We isolated the mutant gad5-1(GAAssociated Dwarf 5),charact...Gibberellin(GA)functions in plant growth and development.However,genes involved in the biosynthesis and regulation of GA in crop plants are poorly understood.We isolated the mutant gad5-1(GAAssociated Dwarf 5),characterized by dwarfing,short internodes,and dark green and short leaves.Map-based gene cloning and allelic verification confirmed that ZmGAD5 encodes ent-kaurenoic acid oxidase(KAO),which catalyzes KA(ent-kaurenoic acid)to GA12 conversion during GA biosynthesis in maize.ZmGAD5 is localized to the endoplasmic reticulum and is present in multiple maize organs.In gad5-1,the expression of ZmGAD5 is severely reduced,and the levels of the direct substrate of KAO,KA,is increased,leading to a reduction in GA content.The abnormal phenotype of gad5-1 was restored by exogenous application of GA3.The biomass,plant height,and levels of GA12 and GA3 in transgenic Arabidopsis overexpressing ZmGAD5 were increased in comparison with the corresponding controls Col-0.These findings deepen our understanding of genes involved in GA biosynthesis,and could lead to the development of maize lines with improved architecture and higher planting-density tolerance.展开更多
Kao Chow加密协议是由Kao和Chow提出的,他们利用BAN逻辑证明了该协议的认证性,但没有证明该协议的保密性,而且没有说明协议参与实体间得到的新会话密钥是否一致.事实上,由于BAN逻辑自身的缺陷,它无法用于证明加密协议的保密性.基于此,...Kao Chow加密协议是由Kao和Chow提出的,他们利用BAN逻辑证明了该协议的认证性,但没有证明该协议的保密性,而且没有说明协议参与实体间得到的新会话密钥是否一致.事实上,由于BAN逻辑自身的缺陷,它无法用于证明加密协议的保密性.基于此,给出了Kao Chow加密协议的串空间模型,这个模型不仅验证了该协议的认证性,还验证了它的保密性及新会话密钥的一致性.展开更多
Our dependability on software in every aspect of our lives has exceeded the level that was expected in the past. We have now reached a point where we are currently stuck with technology, and it made life much easier t...Our dependability on software in every aspect of our lives has exceeded the level that was expected in the past. We have now reached a point where we are currently stuck with technology, and it made life much easier than before. The rapid increase of technology adoption in the different aspects of life has made technology affordable and has led to an even stronger adoption in the society. As technology advances, almost every kind of technology is now connected to the network like infrastructure, automobiles, airplanes, chemical factories, power stations, and many other systems that are business and mission critical. Because of our high dependency on technology in most, if not all, aspects of life, a system failure is considered to be very critical and might result in harming the surrounding environment or put human life at risk. We apply our conceptual framework to integration between security and safety by creating a SaS (Safety and Security) domain model. Furthermore, it demonstrates that it is possible to use goal-oriented KAOS (Knowledge Acquisition in automated Specification) language in threat and hazard analysis to cover both safety and security domains making their outputs, or artifacts, well-structured and comprehensive, which results in dependability due to the comprehensiveness of the analysis. The conceptual framework can thereby act as an interface for active interactions in risk and hazard management in terms of universal coverage, finding solutions for differences and contradictions which can be overcome by integrating the safety and security domains and using a unified system analysis technique (KAOS) that will result in analysis centrality. For validation we chose the Systems-Theoretic Accident Model and Processes (STAMP) approach and its modelling language, namely System-Theoretic Process Analysis for safety (STPA), on the safety side and System-Theoretic Process Analysis for Security (STPA-sec) on the security side in order to be the base of the experiment in comparison to what was done in SaS. The concepts of SaS domain model were applied on STAMP approach using the same example @RemoteSurgery.展开更多
文摘Wigmore’s charts and Bayesian networks are used to represent graphically the construction of arguments and to evaluate them. KAOS is a goal oriented requirements analysis method that enables the analysts to capture requirements through the realization of the business goals. However, KAOS does not have inbuilt mechanism for evaluating these goals and the inferring process. This paper proposes a method for evaluating KAOS models through the extension of Wigmore’s model with features of Bayesian networks.
基金the National Natural Science Foundation of China(U21A20206,Chun-Peng Song)the Project of Sanya Yazhou Bay Science and Technology City(SCKJJYRC-2022-78,Baozhu Li)+1 种基金the Program for Innovative Research Team(in Science and Technology)in University of Henan Province(21IRTSTHN019,Siyi Guo)the 111 Project of China(D16014).
文摘Gibberellin(GA)functions in plant growth and development.However,genes involved in the biosynthesis and regulation of GA in crop plants are poorly understood.We isolated the mutant gad5-1(GAAssociated Dwarf 5),characterized by dwarfing,short internodes,and dark green and short leaves.Map-based gene cloning and allelic verification confirmed that ZmGAD5 encodes ent-kaurenoic acid oxidase(KAO),which catalyzes KA(ent-kaurenoic acid)to GA12 conversion during GA biosynthesis in maize.ZmGAD5 is localized to the endoplasmic reticulum and is present in multiple maize organs.In gad5-1,the expression of ZmGAD5 is severely reduced,and the levels of the direct substrate of KAO,KA,is increased,leading to a reduction in GA content.The abnormal phenotype of gad5-1 was restored by exogenous application of GA3.The biomass,plant height,and levels of GA12 and GA3 in transgenic Arabidopsis overexpressing ZmGAD5 were increased in comparison with the corresponding controls Col-0.These findings deepen our understanding of genes involved in GA biosynthesis,and could lead to the development of maize lines with improved architecture and higher planting-density tolerance.
文摘Our dependability on software in every aspect of our lives has exceeded the level that was expected in the past. We have now reached a point where we are currently stuck with technology, and it made life much easier than before. The rapid increase of technology adoption in the different aspects of life has made technology affordable and has led to an even stronger adoption in the society. As technology advances, almost every kind of technology is now connected to the network like infrastructure, automobiles, airplanes, chemical factories, power stations, and many other systems that are business and mission critical. Because of our high dependency on technology in most, if not all, aspects of life, a system failure is considered to be very critical and might result in harming the surrounding environment or put human life at risk. We apply our conceptual framework to integration between security and safety by creating a SaS (Safety and Security) domain model. Furthermore, it demonstrates that it is possible to use goal-oriented KAOS (Knowledge Acquisition in automated Specification) language in threat and hazard analysis to cover both safety and security domains making their outputs, or artifacts, well-structured and comprehensive, which results in dependability due to the comprehensiveness of the analysis. The conceptual framework can thereby act as an interface for active interactions in risk and hazard management in terms of universal coverage, finding solutions for differences and contradictions which can be overcome by integrating the safety and security domains and using a unified system analysis technique (KAOS) that will result in analysis centrality. For validation we chose the Systems-Theoretic Accident Model and Processes (STAMP) approach and its modelling language, namely System-Theoretic Process Analysis for safety (STPA), on the safety side and System-Theoretic Process Analysis for Security (STPA-sec) on the security side in order to be the base of the experiment in comparison to what was done in SaS. The concepts of SaS domain model were applied on STAMP approach using the same example @RemoteSurgery.