Objectives To evaluate the association between a KCNQ 1 mutation, R259H, and short QT syndrome (SQTS) and to explore the elec- trophysiological mechanisms underlying their association. Methods We performed genetic s...Objectives To evaluate the association between a KCNQ 1 mutation, R259H, and short QT syndrome (SQTS) and to explore the elec- trophysiological mechanisms underlying their association. Methods We performed genetic screening of SQTS genes in 25 probands and their family members (63 patients). We used direct sequencing to screen the exons and intron-exon boundaries of candidate genes that en- code ion channels which contribute to the repolarization of the ventricular action potential, including KCNQI, KCNH2, KCNE1, KCNE2, KCNJ2, CACNAlc, CACNB2b and CACNA2D1. In one of the 25 SQTS probands screened, we discovered a KCNQ1 mutation, R259H. We cloned R259H and transiently expressed it in HEK-293 cells; then, currents were recorded using whole cell patch clamp techniques. Results R259H-KCNQ 1 showed significantly increased current density, which was approximately 3-fold larger than that of wild type (WT) after a depolarizing pulse at 1 s. The steady state voltage dependence of the activation and inactivation did not show significant differences between the WT and R259H mutation (P 〉 0.05), whereas the time constant of deactivation was markedly prolonged in the mutant compared with the WT in terms of the test potentials, which indicated that the deactivation of R259H was markedly slower than that of the WT. These results suggested that the R259H mutation can effectively increase the slowly activated delayed rectifier potassium current (Irs) in phase 3 of the cardiac action potential, which may be an infrequent cause of QT interval shortening. Conclusions R259H is a gain-of-function muta- tion of the KCNQ1 channel that is responsible for SQTS2. This is the first time that the R259H mutation was detected in Chinese people.展开更多
Objective To determine mutations of two common potassium channel subunit genes KCNQ1, KCNH2 causing long QT syndrome (LQTS) in the Chinese.Methods Thirty-one Chinese LQTS pedigrees were characterized for mutations in ...Objective To determine mutations of two common potassium channel subunit genes KCNQ1, KCNH2 causing long QT syndrome (LQTS) in the Chinese.Methods Thirty-one Chinese LQTS pedigrees were characterized for mutations in the two LQTS genes, KCNQ1 and KCNH2, by sequencing.Results Two novel KCNQ1 mutations, S277L in the S5 domain and G306V in the channel pore, and two novel KCNH2 mutations, L413P in the transmembrane domain S1 and L559H in the transmembrane domain S5 were identified. The triggering factors for cardiac events developed in these mutation carriers included physical exercise and excitation. Mutation L413P in KCNH2 was associated with the notched T wave on ECGs. Mutation L559H in KCNH2 was associated with the typical bifid T wave on ECGs. Mutation S277L in KCNQ1 was associated with a high-amplitude T wave and G306V was associated with a low-amplitude T wave. Two likely polymorphisms, IVS11 +18C >T in KCNQ1 and L520V in KCNH2 were also identified in two LQTS patients.Conclusions The mutation rates for both KCNQ1 (6.4%) and KCNH2 (6.4%) are lower in the Chinese population than those from North America or Europe.展开更多
基金grants obtained from the National Natural Science Foundation of China (No.: 81170177, 81030002) and science and Technology De- partment of Gansu Province Project (145RJZ104).
文摘Objectives To evaluate the association between a KCNQ 1 mutation, R259H, and short QT syndrome (SQTS) and to explore the elec- trophysiological mechanisms underlying their association. Methods We performed genetic screening of SQTS genes in 25 probands and their family members (63 patients). We used direct sequencing to screen the exons and intron-exon boundaries of candidate genes that en- code ion channels which contribute to the repolarization of the ventricular action potential, including KCNQI, KCNH2, KCNE1, KCNE2, KCNJ2, CACNAlc, CACNB2b and CACNA2D1. In one of the 25 SQTS probands screened, we discovered a KCNQ1 mutation, R259H. We cloned R259H and transiently expressed it in HEK-293 cells; then, currents were recorded using whole cell patch clamp techniques. Results R259H-KCNQ 1 showed significantly increased current density, which was approximately 3-fold larger than that of wild type (WT) after a depolarizing pulse at 1 s. The steady state voltage dependence of the activation and inactivation did not show significant differences between the WT and R259H mutation (P 〉 0.05), whereas the time constant of deactivation was markedly prolonged in the mutant compared with the WT in terms of the test potentials, which indicated that the deactivation of R259H was markedly slower than that of the WT. These results suggested that the R259H mutation can effectively increase the slowly activated delayed rectifier potassium current (Irs) in phase 3 of the cardiac action potential, which may be an infrequent cause of QT interval shortening. Conclusions R259H is a gain-of-function muta- tion of the KCNQ1 channel that is responsible for SQTS2. This is the first time that the R259H mutation was detected in Chinese people.
基金This study was supported by grants from the National Natural Science Foundation of China (No.30170381) the American Heart Association Ohio-Affiliate (No. AHA 0051205B).
文摘Objective To determine mutations of two common potassium channel subunit genes KCNQ1, KCNH2 causing long QT syndrome (LQTS) in the Chinese.Methods Thirty-one Chinese LQTS pedigrees were characterized for mutations in the two LQTS genes, KCNQ1 and KCNH2, by sequencing.Results Two novel KCNQ1 mutations, S277L in the S5 domain and G306V in the channel pore, and two novel KCNH2 mutations, L413P in the transmembrane domain S1 and L559H in the transmembrane domain S5 were identified. The triggering factors for cardiac events developed in these mutation carriers included physical exercise and excitation. Mutation L413P in KCNH2 was associated with the notched T wave on ECGs. Mutation L559H in KCNH2 was associated with the typical bifid T wave on ECGs. Mutation S277L in KCNQ1 was associated with a high-amplitude T wave and G306V was associated with a low-amplitude T wave. Two likely polymorphisms, IVS11 +18C >T in KCNQ1 and L520V in KCNH2 were also identified in two LQTS patients.Conclusions The mutation rates for both KCNQ1 (6.4%) and KCNH2 (6.4%) are lower in the Chinese population than those from North America or Europe.