Most irradiation studies in the hydrogen bonded ferroelectrics have been concentrated on the transient defects induced by ionising radiation, such as ultraviolet (UV) light, where the defects are closely related to ...Most irradiation studies in the hydrogen bonded ferroelectrics have been concentrated on the transient defects induced by ionising radiation, such as ultraviolet (UV) light, where the defects are closely related to the optical properties. But heavy ion beam irradiation effects have rarely been studied. The structural, optical, and non-linear optical properties of the doped crystals were analyzed with the characterization studies, such as powder XRD, UV-Visible and second harmonic generation (SHG) measurements, respectively. The results for doped KDP crystal were compared with the results of the pure KDP crystals. The experiment results showed that Li^3+ irradiation leads to the development of a well-defined surface H peak in dye doped KDP crystals. The stability of KDP single crystal was improved by doping organic dyes. The nano-islands of dye in KDP were likely to be dissolved and enhance the non-linear optical properties of these materials.展开更多
KDP crystals doped with Chicago Sky Blue 6B(CSB-6B) were grown by traditional lowering temperature method.The optical properties and structural perfection of KDP crystals were investigated by transmittance spectra a...KDP crystals doped with Chicago Sky Blue 6B(CSB-6B) were grown by traditional lowering temperature method.The optical properties and structural perfection of KDP crystals were investigated by transmittance spectra and high-resolution X-ray diffraction,respectively.The results indicate that CSB-6B tends to be incorporated into the pyramidal sector of KDP crystals(PyS-KDP) and lead to inclusions parallel to(101) face.Additionally,the transmittance of as-grown KDP crystals decreases as the amount of CSB-6B increases. Moreover,the rocking curves of PyS-KDP suggest that CSB-6B can deteriorate the structural perfection of PyS-KDP.展开更多
文摘Most irradiation studies in the hydrogen bonded ferroelectrics have been concentrated on the transient defects induced by ionising radiation, such as ultraviolet (UV) light, where the defects are closely related to the optical properties. But heavy ion beam irradiation effects have rarely been studied. The structural, optical, and non-linear optical properties of the doped crystals were analyzed with the characterization studies, such as powder XRD, UV-Visible and second harmonic generation (SHG) measurements, respectively. The results for doped KDP crystal were compared with the results of the pure KDP crystals. The experiment results showed that Li^3+ irradiation leads to the development of a well-defined surface H peak in dye doped KDP crystals. The stability of KDP single crystal was improved by doping organic dyes. The nano-islands of dye in KDP were likely to be dissolved and enhance the non-linear optical properties of these materials.
基金Supported by the State High Technology Program for Inertial Confinement Fusion and National Natural Science Foundation of China (No 59823003, 50721002)China Postdoctoral Science Foundation (No 20080441139)Youth Scientist Fund of Shandong Province (No 2004BS04022)
文摘KDP crystals doped with Chicago Sky Blue 6B(CSB-6B) were grown by traditional lowering temperature method.The optical properties and structural perfection of KDP crystals were investigated by transmittance spectra and high-resolution X-ray diffraction,respectively.The results indicate that CSB-6B tends to be incorporated into the pyramidal sector of KDP crystals(PyS-KDP) and lead to inclusions parallel to(101) face.Additionally,the transmittance of as-grown KDP crystals decreases as the amount of CSB-6B increases. Moreover,the rocking curves of PyS-KDP suggest that CSB-6B can deteriorate the structural perfection of PyS-KDP.