We present a model based on Computational Temporal Logic (CTL) methods forverifying security requirements of electronic commerce, protocols. The model describes formally theauthentication, confidentiality integrity, n...We present a model based on Computational Temporal Logic (CTL) methods forverifying security requirements of electronic commerce, protocols. The model describes formally theauthentication, confidentiality integrity, non-repudiation) denial of serviee and access control ofthe e-lectronic commerce protocols. We illustrate as case study a variant of the Lu-Smolka protocolproposed by Lu-Smolka Moreover, we have discovered two attacks that allow a dishonest user topurchase a good debiting the amountto another user. And also, we compared our work with relativeresearch works and found lhat the formal way of this paper is more general to specify securityprotocols for E-Commerce.展开更多
Denial of Service Distributed Denial of Service (DOS) attack, especially (DDoS) attack, is one of the greatest threats to Internet. Much research has been done for it by now, however, it is always concentrated in ...Denial of Service Distributed Denial of Service (DOS) attack, especially (DDoS) attack, is one of the greatest threats to Internet. Much research has been done for it by now, however, it is always concentrated in the behaviors of the network and can not deal with the problem exactly. In this paper, we start from the security of the protocol, then we propose a novel theory for security protocol analysis of Denial of Service in order to deal with the DoS attack. We first introduce the conception of weighted graph to extend the strand space model, then we extend the penetrator model and define the goal of anti-DoS attack through the conception of the DoS-stop protocol, finally we propose two kinds of DoS test model and erect the novel formal theory for security protocol analysis of Denial of Service. Our new formal theory is applied in two example protocols. It is proved that the Internet key exchange (IKE) easily suffers from the DoS attacks, and the efficient DoS- resistant secure key exchange protocol (JFK) is resistant against DoS attack for the server, respectively.展开更多
The area of formal verification of protocols has gained substantial importance in the recent years. The research results and subsequent applications have amply demonstrated that the formal verification tools have inde...The area of formal verification of protocols has gained substantial importance in the recent years. The research results and subsequent applications have amply demonstrated that the formal verification tools have indeed helped correct the protocols even after being standardized. However, the standard protocol verification tools and techniques do not verify the security properties of a cryptographic protocol. This has resulted in the emergence of the security protocol verifiers to fill the need. In this paper, taking the two popular security verification tools namely Scyther and ProVerif as the basis, we identify a few security protocols and implement them in both Scyther and ProVerif, to aptly evaluate the tools, in terms of the security properties of the selected protocols. In the process, we not only characteristically present a comparative evaluation of the two tools, but also reveal interesting security properties of the protocols selected, showing their strengths and weaknesses. To the best of our knowledge, this is a unique attempt to juxtapose and evaluate the two verification tools using the selected security protocols.展开更多
In this paper, a general framework for designing and analyzing password-based security protocols is presented. First we introduce the concept of "weak computational indistinguishability" based on current progress of...In this paper, a general framework for designing and analyzing password-based security protocols is presented. First we introduce the concept of "weak computational indistinguishability" based on current progress of password-based security protocols. Then, we focus on cryptographic foundations for password-based security protocols, i.e., the theory of "weak pseudorandomness". Furthermore, based on the theory of weak pseudorandomness, we present a modular approach to design and analysis of password-based security protocols. Finally, applying the modular approach, we design two kinds of password-based security protocols, i.e., password-based session key distribution (PSKD) protocol and protected password change (PPC) protocol. In addition to having forward secrecy and improved efficiency, new protocols are proved secure.展开更多
Traditional control does not pay much attention to information security problems in system identification enough, which are important in practical applications. This paper focuses on the security problem of input info...Traditional control does not pay much attention to information security problems in system identification enough, which are important in practical applications. This paper focuses on the security problem of input information in a class of system identification problems with noise and binary-valued observations, presents a cryptography based security protocol, and improves it in the range of allowed errors. During solving the identification problem, the improved security protocol can ensure that the input information is not leaked, and thus, can deal with passive attacks effectively. Besides, a quantitative relationship among the input information, the public key in encryption and the number of partieipailts in the improved protocol is shown. Finally, the simulation results show that, the identification algorithm can still achieve the estimation accuracy by adding the improved security protocol. However, compared with the original identification algorithm, the time complexity of the algorithm with the improved security protocol increases.展开更多
Security protocols play more and more important roles with wide use in many applications nowadays. Cur- rently, there are many tools for specifying and verifying secu- rity protocols such as Casper/FDR, ProVerif, or A...Security protocols play more and more important roles with wide use in many applications nowadays. Cur- rently, there are many tools for specifying and verifying secu- rity protocols such as Casper/FDR, ProVerif, or AVISPA. In these tools, the intruder's ability, which either needs to be specified explicitly or set by default, is not flexible in some circumstances. Moreover, whereas most of the existing tools focus on secrecy and authentication properties, few supports privacy properties like anonymity, receipt freeness, and coer- cion resistance, which are crucial in many applications such as in electronic voting systems or anonymous online transac- tions. In this paper, we introduce a framework for specifying security protocols in the labeled transition system (LTS) se- mantics model, which embeds the knowledge of the par- ticipants and parameterizes the ability of an attacker. Us- ing this model, we give the formal definitions for three types of privacy properties based on trace equivalence and knowledge reasoning. The formal definitions for some other security properties, such as secrecy and authentica- tion, are introduced under this framework, and the veri- fication algorithms are also given. The results of this pa- per are embodied in the implementation of a SeVe mod- ule in a process analysis toolkit (PAT) model checker, which supports specifying, simulating, and verifying se- curity protocols. The experimental results show that a SeVe module is capable of verifying many types of secu- rity protocols and complements the state-of-the-art securityverifiers in several aspects. Moreover, it also proves the abil- ity in building an automatic verifier for security protocols re- lated to privacy type, which are mostly verified by hand now.展开更多
The differences among the extended Canetti & Krawezyk 2007 model (ECK2007) and other four models, i.e., the Bellare & Rogaway (1993, 1995)models (BR93,BR95), the Bellare, Pointcheval & Rogaway (2000) model ...The differences among the extended Canetti & Krawezyk 2007 model (ECK2007) and other four models, i.e., the Bellare & Rogaway (1993, 1995)models (BR93,BR95), the Bellare, Pointcheval & Rogaway (2000) model (BPR2000) and the Canetti & Krawczyk (2001) model (CK2001) are given. The relative strength of security among these models is analyzed. To support the implication or non-implication relation among these models, the formal proof or the counter-example is provided.展开更多
In order to transmit the secure messages,a deterministic secure quantum direct communication protocol,called the "Ping-pong"protocol was proposed by Bostrm and Felbinger [Phys.Rev.Lett.89,187902(2002) ].But ...In order to transmit the secure messages,a deterministic secure quantum direct communication protocol,called the "Ping-pong"protocol was proposed by Bostrm and Felbinger [Phys.Rev.Lett.89,187902(2002) ].But the protocol was proved to have many vulnerabilities,and can be attacked by eavesdroppers.To overcome the problem,an improved security detection strategy which inserts the | 0〉,| 1〉,|+〉and |-〉particles into the messages as the decoy particles randomly in the"Ping-pong"protocol is presented.During the security analysis,the method of the entropy theory is introduced,and three detection strategies are compared quantitatively by using the constraint between the information which eavesdroppers can obtain and the interference introduced.Because of the presence of the trap particles |+〉and |-〉,the detection rate will be no less than 25% when Eve attacks the communication.The security analysis result shows that the efficiency of eavesdropping detection in the presented protocol is higher than the other two,so the detection strategy in the protocol can ensure that the "Ping-pong"protocol is more secure.展开更多
Provable security has become a popular approach for analyzing the security of cryptographic protocols.However,writing and verifying proofs by hand are prone to errors.This paper advocates the automatic security proof ...Provable security has become a popular approach for analyzing the security of cryptographic protocols.However,writing and verifying proofs by hand are prone to errors.This paper advocates the automatic security proof framework with sequences of games.We make slight modifications to Blanchet's calculus to make it easy for parsing the initial game.The main contribution of this work is that it introduces algebraic properties with observational equivalences to automatic security proofs,and thus can deal with some practical cryptographic schemes with hard problems.We illustrate the use of algebraic properties in the framework by proving the semantic security of the ElGamal encryption scheme.展开更多
Ad-hoc networking has mainly been associated with military battlefield networks. Security has received considerably less attention and the issue needs to be addressed before any successful applications will appear. Du...Ad-hoc networking has mainly been associated with military battlefield networks. Security has received considerably less attention and the issue needs to be addressed before any successful applications will appear. Due to the insecure nature of the wireless link and their dynamically changing topology, wireless ad-hoc networks require a careful and security-oriented approach for designing routing protocols. In this paper, an AODV-based secure routing protocol- ENAODV is presented. A speed-optimized digital signature algorithm is integrated into the routing protocol. The protocol algorithm is implemented with NS-2. The security of the protocol is analyzed. The simulating results show that the performances of ENAODV protocol, such as average node energy consumption, packet delay and packet delivery is nearly the same as standard AODV protocol.展开更多
Security protocol is specified as the procedure of challenge-response, which uses applied cryptography to confirm the existence of other principals and fulfill some data negotiation such as session keys. Most of the e...Security protocol is specified as the procedure of challenge-response, which uses applied cryptography to confirm the existence of other principals and fulfill some data negotiation such as session keys. Most of the existing analysis methods, which either adopt theorem proving techniques such as state exploration or logic reasoning techniques such as authentication logic, face the conflicts between analysis power and operability. To solve the problem, a new efficient method is proposed that provides SSM semantics-based definition of secrecy and authentication goals and applies authentication logic as fundamental analysis techniques, in which secrecy analysis is split into two parts: Explicit-lnformaUon-Leakage and Implicit-Information-Leakage, and correspondence analysis is concluded as the analysis of the existence relationship of Strands and the agreement of Strand pa- rameters. This new method owns both the power of the Strand Space Model and concision of authentication logic.展开更多
Quantitative security metrics are desirable for measuring the performance of information security controls. Security metrics help to make functional and business decisions for improving the performance and cost of the...Quantitative security metrics are desirable for measuring the performance of information security controls. Security metrics help to make functional and business decisions for improving the performance and cost of the security controls. However, defining enterprise-level security metrics has already been listed as one of the hard problems in the Info Sec Research Council's hard problems list. Almost all the efforts in defining absolute security metrics for the enterprise security have not been proved fruitful. At the same time, with the maturity of the security industry, there has been a continuous emphasis from the regulatory bodies on establishing measurable security metrics. This paper addresses this need and proposes a relative security metric model that derives three quantitative security metrics named Attack Resiliency Measure(ARM), Performance Improvement Factor(PIF), and Cost/Benefit Measure(CBM) for measuring the performance of the security controls. For the effectiveness evaluation of the proposed security metrics, we took the secure virtual machine(VM) migration protocol as the target of assessment. The virtual-ization technologies are rapidly changing the landscape of the computing world. Devising security metrics for virtualized environment is even more challenging. As secure virtual machine migration is an evolving area and no standard protocol is available specifically for secure VM migration. This paper took the secure virtual machine migration protocol as the target of assessment and applied the proposed relative security metric model for measuring the Attack Resiliency Measure, Performance Improvement Factor, and Cost/Benefit Measure of the secure VM migration protocol.展开更多
To analyze the security of two-step quantum direct communication protocol (QDCP) by using Einstein-Podolsky Rosen pair proposed by Deng et al. [Phys. Rev. A 68 (2003)042317] in collective-rotation noise channel, a...To analyze the security of two-step quantum direct communication protocol (QDCP) by using Einstein-Podolsky Rosen pair proposed by Deng et al. [Phys. Rev. A 68 (2003)042317] in collective-rotation noise channel, an excellent model of noise analysis is proposed. In the security analysis, the method of the entropy theory is introduced, and is compared with QDCP, an error rate point Qo(M : (Q0, 1.0)) is given. In different noise levels, if Eve wants to obtain the same amount of information, the error rate Q is distinguishable. The larger the noise level ~ is, the larger the error rate Q is. When the noise level ~ is lower than 11%, the high error rate is 0.153 without eavesdropping. Lastly, the security of the proposed protocol is discussed. It turns out that the quantum channel will be safe when Q 〈 0.153. Similarly, if error rate Q〉 0.153 = Q0, eavesdropping information I 〉 1, which means that there exist eavesdroppers in the quantum channel, and the quantum channel will not be safe anymore.展开更多
This paper evaluates the performance of Internet Protocol Security (IPSec) based Multiprotocol Label Switching (MPLS) virtual private network (VPN) in a small to medium sized organization. The demand for security in d...This paper evaluates the performance of Internet Protocol Security (IPSec) based Multiprotocol Label Switching (MPLS) virtual private network (VPN) in a small to medium sized organization. The demand for security in data networks has been increasing owing to the high cyber attacks and potential risks associated with networks spread over distant geographical locations. The MPLS networks ride on the public network backbone that is porous and highly susceptible to attacks and so the need for reliable security mechanisms to be part of the deployment plan. The evaluation criteria concentrated on Voice over Internet Protocol (VoIP) and Video conferencing with keen interest in jitter, end to end delivery and general data flow. This study used both structured questionnaire and observation methods. The structured questionnaire was administered to a group of 70 VPN users in a company. This provided the study with precise responses. The observation method was used in data simulations using OPNET Version 14.5 Simulation software. The results show that the IPSec features increase the size of data packets by approximately 9.98% translating into approximately 90.02% effectiveness. The tests showed that the performance metrics are all well within the recommended standards. The IPSec Based MPLS Virtual private network is more stable and secure than one without IPSec.展开更多
The architecture and protocols of Internet can't work well in space environments. To form a reliable and safe space network, characteristics of space communication network one discusse, brief synthesis is performe...The architecture and protocols of Internet can't work well in space environments. To form a reliable and safe space network, characteristics of space communication network one discusse, brief synthesis is performed for consultative committee for space data system (CCSDS) space communications protocol standards (SCPS), and a model accounting for data security problem of space-earth integrated network is provided.展开更多
In this paper, we propose a partially non-cryptographic security routing protocol (PNCSR) that protects both routing and data forwarding operations through the same reactive approach. PNCSR only apply public-key cry...In this paper, we propose a partially non-cryptographic security routing protocol (PNCSR) that protects both routing and data forwarding operations through the same reactive approach. PNCSR only apply public-key cryptographic system in managing token, but it doesn't utilize any cryptographic primitives on the routing messages. In PNCSR, each node is fair. Local neighboring nodes collaboratively monitor each other and sustain each other. It also uses a novel credit strategy which additively increases the token lifetime each time a node renews its token. We also analyze the storage, computation, and communication overhead of PNCSR, and provide a simple yet meaningful overhead comparison. Finally, the simulation results show the effectiveness of PNCSR in various situations.展开更多
The wireless application protocol (WAP) protocol is now the leading standard for information services on wireless terminals like digital mobile phones. By the use of WAP, wireless devices, like mobile phones, are po...The wireless application protocol (WAP) protocol is now the leading standard for information services on wireless terminals like digital mobile phones. By the use of WAP, wireless devices, like mobile phones, are possibly infected with virus and worms. Though up to now there is no such attack, as the usage of script languages increases, there is a chance of malicious code injection. This paper discusses the threats with current WAP protocol, and how changes in the protocol and the increase in its usage will enable entry of real viruses. Future threat scenarios are presented along with suggestions to avoid these problems.展开更多
Group key exchange protocols are basic protocols to provide privacy and integrity in secure group communication. This paper discusses the security of one type of group key exchange protocols and defines the kind of pr...Group key exchange protocols are basic protocols to provide privacy and integrity in secure group communication. This paper discusses the security of one type of group key exchange protocols and defines the kind of protocols as broadcaster group protocols. It points out two attacks on this kind of protocols. The first attack can be avoided by using fresh values in each action during one session of the group protocol. The second attack should be related with concrete application. It also proposes a dynamic key agreement protocol as an example of solutions at the last part of the paper.展开更多
基金Supported by the Natural Science Foundation ofthe Department of Education of Guangdong Province (Z03001)
文摘We present a model based on Computational Temporal Logic (CTL) methods forverifying security requirements of electronic commerce, protocols. The model describes formally theauthentication, confidentiality integrity, non-repudiation) denial of serviee and access control ofthe e-lectronic commerce protocols. We illustrate as case study a variant of the Lu-Smolka protocolproposed by Lu-Smolka Moreover, we have discovered two attacks that allow a dishonest user topurchase a good debiting the amountto another user. And also, we compared our work with relativeresearch works and found lhat the formal way of this paper is more general to specify securityprotocols for E-Commerce.
基金This work is supported by National Natural Science Foundation of China under contract 60902008.
文摘Denial of Service Distributed Denial of Service (DOS) attack, especially (DDoS) attack, is one of the greatest threats to Internet. Much research has been done for it by now, however, it is always concentrated in the behaviors of the network and can not deal with the problem exactly. In this paper, we start from the security of the protocol, then we propose a novel theory for security protocol analysis of Denial of Service in order to deal with the DoS attack. We first introduce the conception of weighted graph to extend the strand space model, then we extend the penetrator model and define the goal of anti-DoS attack through the conception of the DoS-stop protocol, finally we propose two kinds of DoS test model and erect the novel formal theory for security protocol analysis of Denial of Service. Our new formal theory is applied in two example protocols. It is proved that the Internet key exchange (IKE) easily suffers from the DoS attacks, and the efficient DoS- resistant secure key exchange protocol (JFK) is resistant against DoS attack for the server, respectively.
文摘The area of formal verification of protocols has gained substantial importance in the recent years. The research results and subsequent applications have amply demonstrated that the formal verification tools have indeed helped correct the protocols even after being standardized. However, the standard protocol verification tools and techniques do not verify the security properties of a cryptographic protocol. This has resulted in the emergence of the security protocol verifiers to fill the need. In this paper, taking the two popular security verification tools namely Scyther and ProVerif as the basis, we identify a few security protocols and implement them in both Scyther and ProVerif, to aptly evaluate the tools, in terms of the security properties of the selected protocols. In the process, we not only characteristically present a comparative evaluation of the two tools, but also reveal interesting security properties of the protocols selected, showing their strengths and weaknesses. To the best of our knowledge, this is a unique attempt to juxtapose and evaluate the two verification tools using the selected security protocols.
基金the National Natural Science Foundation of China (Grant Nos. 60025205 and 60673083)
文摘In this paper, a general framework for designing and analyzing password-based security protocols is presented. First we introduce the concept of "weak computational indistinguishability" based on current progress of password-based security protocols. Then, we focus on cryptographic foundations for password-based security protocols, i.e., the theory of "weak pseudorandomness". Furthermore, based on the theory of weak pseudorandomness, we present a modular approach to design and analysis of password-based security protocols. Finally, applying the modular approach, we design two kinds of password-based security protocols, i.e., password-based session key distribution (PSKD) protocol and protected password change (PPC) protocol. In addition to having forward secrecy and improved efficiency, new protocols are proved secure.
基金supported by the National Key Basic Research Program of China(973 Program)under Grant No.2014CB845301the National Natural Science Foundation of China under Grant No.61227902
文摘Traditional control does not pay much attention to information security problems in system identification enough, which are important in practical applications. This paper focuses on the security problem of input information in a class of system identification problems with noise and binary-valued observations, presents a cryptography based security protocol, and improves it in the range of allowed errors. During solving the identification problem, the improved security protocol can ensure that the input information is not leaked, and thus, can deal with passive attacks effectively. Besides, a quantitative relationship among the input information, the public key in encryption and the number of partieipailts in the improved protocol is shown. Finally, the simulation results show that, the identification algorithm can still achieve the estimation accuracy by adding the improved security protocol. However, compared with the original identification algorithm, the time complexity of the algorithm with the improved security protocol increases.
文摘Security protocols play more and more important roles with wide use in many applications nowadays. Cur- rently, there are many tools for specifying and verifying secu- rity protocols such as Casper/FDR, ProVerif, or AVISPA. In these tools, the intruder's ability, which either needs to be specified explicitly or set by default, is not flexible in some circumstances. Moreover, whereas most of the existing tools focus on secrecy and authentication properties, few supports privacy properties like anonymity, receipt freeness, and coer- cion resistance, which are crucial in many applications such as in electronic voting systems or anonymous online transac- tions. In this paper, we introduce a framework for specifying security protocols in the labeled transition system (LTS) se- mantics model, which embeds the knowledge of the par- ticipants and parameterizes the ability of an attacker. Us- ing this model, we give the formal definitions for three types of privacy properties based on trace equivalence and knowledge reasoning. The formal definitions for some other security properties, such as secrecy and authentica- tion, are introduced under this framework, and the veri- fication algorithms are also given. The results of this pa- per are embodied in the implementation of a SeVe mod- ule in a process analysis toolkit (PAT) model checker, which supports specifying, simulating, and verifying se- curity protocols. The experimental results show that a SeVe module is capable of verifying many types of secu- rity protocols and complements the state-of-the-art securityverifiers in several aspects. Moreover, it also proves the abil- ity in building an automatic verifier for security protocols re- lated to privacy type, which are mostly verified by hand now.
文摘The differences among the extended Canetti & Krawezyk 2007 model (ECK2007) and other four models, i.e., the Bellare & Rogaway (1993, 1995)models (BR93,BR95), the Bellare, Pointcheval & Rogaway (2000) model (BPR2000) and the Canetti & Krawczyk (2001) model (CK2001) are given. The relative strength of security among these models is analyzed. To support the implication or non-implication relation among these models, the formal proof or the counter-example is provided.
基金supported by Specialized Research Fund for the Doctoral Program of Higher Education of China under Grant No.20060013007National Natural Science Foundation of Beijing under Grant No.4092029National Natural Science Foundation of China under Grant No.60873001
文摘In order to transmit the secure messages,a deterministic secure quantum direct communication protocol,called the "Ping-pong"protocol was proposed by Bostrm and Felbinger [Phys.Rev.Lett.89,187902(2002) ].But the protocol was proved to have many vulnerabilities,and can be attacked by eavesdroppers.To overcome the problem,an improved security detection strategy which inserts the | 0〉,| 1〉,|+〉and |-〉particles into the messages as the decoy particles randomly in the"Ping-pong"protocol is presented.During the security analysis,the method of the entropy theory is introduced,and three detection strategies are compared quantitatively by using the constraint between the information which eavesdroppers can obtain and the interference introduced.Because of the presence of the trap particles |+〉and |-〉,the detection rate will be no less than 25% when Eve attacks the communication.The security analysis result shows that the efficiency of eavesdropping detection in the presented protocol is higher than the other two,so the detection strategy in the protocol can ensure that the "Ping-pong"protocol is more secure.
基金National High Technical Research and Development Program of China(863 program)under Grant No. 2007AA01Z471
文摘Provable security has become a popular approach for analyzing the security of cryptographic protocols.However,writing and verifying proofs by hand are prone to errors.This paper advocates the automatic security proof framework with sequences of games.We make slight modifications to Blanchet's calculus to make it easy for parsing the initial game.The main contribution of this work is that it introduces algebraic properties with observational equivalences to automatic security proofs,and thus can deal with some practical cryptographic schemes with hard problems.We illustrate the use of algebraic properties in the framework by proving the semantic security of the ElGamal encryption scheme.
基金This work was supported by China Nature Science Fund .Serial No.60073059and60273078
文摘Ad-hoc networking has mainly been associated with military battlefield networks. Security has received considerably less attention and the issue needs to be addressed before any successful applications will appear. Due to the insecure nature of the wireless link and their dynamically changing topology, wireless ad-hoc networks require a careful and security-oriented approach for designing routing protocols. In this paper, an AODV-based secure routing protocol- ENAODV is presented. A speed-optimized digital signature algorithm is integrated into the routing protocol. The protocol algorithm is implemented with NS-2. The security of the protocol is analyzed. The simulating results show that the performances of ENAODV protocol, such as average node energy consumption, packet delay and packet delivery is nearly the same as standard AODV protocol.
基金National Natural Science Foundation of China (Grant Nos. 90412014 and 90604004)Jiangsu Provincial Key Laboratory of Network and Information Security (Grant No. BM2003201)Jiangsu Provincial High-Tech Research Program (Grant No. BG2004036)
文摘Security protocol is specified as the procedure of challenge-response, which uses applied cryptography to confirm the existence of other principals and fulfill some data negotiation such as session keys. Most of the existing analysis methods, which either adopt theorem proving techniques such as state exploration or logic reasoning techniques such as authentication logic, face the conflicts between analysis power and operability. To solve the problem, a new efficient method is proposed that provides SSM semantics-based definition of secrecy and authentication goals and applies authentication logic as fundamental analysis techniques, in which secrecy analysis is split into two parts: Explicit-lnformaUon-Leakage and Implicit-Information-Leakage, and correspondence analysis is concluded as the analysis of the existence relationship of Strands and the agreement of Strand pa- rameters. This new method owns both the power of the Strand Space Model and concision of authentication logic.
文摘Quantitative security metrics are desirable for measuring the performance of information security controls. Security metrics help to make functional and business decisions for improving the performance and cost of the security controls. However, defining enterprise-level security metrics has already been listed as one of the hard problems in the Info Sec Research Council's hard problems list. Almost all the efforts in defining absolute security metrics for the enterprise security have not been proved fruitful. At the same time, with the maturity of the security industry, there has been a continuous emphasis from the regulatory bodies on establishing measurable security metrics. This paper addresses this need and proposes a relative security metric model that derives three quantitative security metrics named Attack Resiliency Measure(ARM), Performance Improvement Factor(PIF), and Cost/Benefit Measure(CBM) for measuring the performance of the security controls. For the effectiveness evaluation of the proposed security metrics, we took the secure virtual machine(VM) migration protocol as the target of assessment. The virtual-ization technologies are rapidly changing the landscape of the computing world. Devising security metrics for virtualized environment is even more challenging. As secure virtual machine migration is an evolving area and no standard protocol is available specifically for secure VM migration. This paper took the secure virtual machine migration protocol as the target of assessment and applied the proposed relative security metric model for measuring the Attack Resiliency Measure, Performance Improvement Factor, and Cost/Benefit Measure of the secure VM migration protocol.
基金Supported by the National Natural Science Foundation of China under Grant Nos 61472048,61402058,61272511,61472046,61202082 and 61370194the Beijing Natural Science Foundation under Grant No 4152038the China Postdoctoral Science Foundation Funded Project under Grant No 2014M561826
文摘To analyze the security of two-step quantum direct communication protocol (QDCP) by using Einstein-Podolsky Rosen pair proposed by Deng et al. [Phys. Rev. A 68 (2003)042317] in collective-rotation noise channel, an excellent model of noise analysis is proposed. In the security analysis, the method of the entropy theory is introduced, and is compared with QDCP, an error rate point Qo(M : (Q0, 1.0)) is given. In different noise levels, if Eve wants to obtain the same amount of information, the error rate Q is distinguishable. The larger the noise level ~ is, the larger the error rate Q is. When the noise level ~ is lower than 11%, the high error rate is 0.153 without eavesdropping. Lastly, the security of the proposed protocol is discussed. It turns out that the quantum channel will be safe when Q 〈 0.153. Similarly, if error rate Q〉 0.153 = Q0, eavesdropping information I 〉 1, which means that there exist eavesdroppers in the quantum channel, and the quantum channel will not be safe anymore.
文摘This paper evaluates the performance of Internet Protocol Security (IPSec) based Multiprotocol Label Switching (MPLS) virtual private network (VPN) in a small to medium sized organization. The demand for security in data networks has been increasing owing to the high cyber attacks and potential risks associated with networks spread over distant geographical locations. The MPLS networks ride on the public network backbone that is porous and highly susceptible to attacks and so the need for reliable security mechanisms to be part of the deployment plan. The evaluation criteria concentrated on Voice over Internet Protocol (VoIP) and Video conferencing with keen interest in jitter, end to end delivery and general data flow. This study used both structured questionnaire and observation methods. The structured questionnaire was administered to a group of 70 VPN users in a company. This provided the study with precise responses. The observation method was used in data simulations using OPNET Version 14.5 Simulation software. The results show that the IPSec features increase the size of data packets by approximately 9.98% translating into approximately 90.02% effectiveness. The tests showed that the performance metrics are all well within the recommended standards. The IPSec Based MPLS Virtual private network is more stable and secure than one without IPSec.
文摘The architecture and protocols of Internet can't work well in space environments. To form a reliable and safe space network, characteristics of space communication network one discusse, brief synthesis is performed for consultative committee for space data system (CCSDS) space communications protocol standards (SCPS), and a model accounting for data security problem of space-earth integrated network is provided.
基金Supported bythe National Natural Science Foundationof China (60403027)
文摘In this paper, we propose a partially non-cryptographic security routing protocol (PNCSR) that protects both routing and data forwarding operations through the same reactive approach. PNCSR only apply public-key cryptographic system in managing token, but it doesn't utilize any cryptographic primitives on the routing messages. In PNCSR, each node is fair. Local neighboring nodes collaboratively monitor each other and sustain each other. It also uses a novel credit strategy which additively increases the token lifetime each time a node renews its token. We also analyze the storage, computation, and communication overhead of PNCSR, and provide a simple yet meaningful overhead comparison. Finally, the simulation results show the effectiveness of PNCSR in various situations.
文摘The wireless application protocol (WAP) protocol is now the leading standard for information services on wireless terminals like digital mobile phones. By the use of WAP, wireless devices, like mobile phones, are possibly infected with virus and worms. Though up to now there is no such attack, as the usage of script languages increases, there is a chance of malicious code injection. This paper discusses the threats with current WAP protocol, and how changes in the protocol and the increase in its usage will enable entry of real viruses. Future threat scenarios are presented along with suggestions to avoid these problems.
基金Supported by the National Natural Science Foun-dation of China (90104005 ,60473023) the National High Tech-nology Research and Development Programof China (863 Program)(2002AA41051)
文摘Group key exchange protocols are basic protocols to provide privacy and integrity in secure group communication. This paper discusses the security of one type of group key exchange protocols and defines the kind of protocols as broadcaster group protocols. It points out two attacks on this kind of protocols. The first attack can be avoided by using fresh values in each action during one session of the group protocol. The second attack should be related with concrete application. It also proposes a dynamic key agreement protocol as an example of solutions at the last part of the paper.