To improve the performance of the multiple classifier system, a new method of feature-decision level fusion is proposed based on knowledge discovery. In the new method, the base classifiers operate on different featur...To improve the performance of the multiple classifier system, a new method of feature-decision level fusion is proposed based on knowledge discovery. In the new method, the base classifiers operate on different feature spaces and their types depend on different measures of between-class separability. The uncertainty measures corresponding to each output of each base classifier are induced from the established decision tables (DTs) in the form of mass function in the Dempster-Shafer theory (DST). Furthermore, an effective fusion framework is built at the feature-decision level on the basis of a generalized rough set model and the DST. The experiment for the classification of hyperspectral remote sensing images shows that the performance of the classification can be improved by the proposed method compared with that of plurality voting (PV).展开更多
Currently, knowledge-based sharing and service system has been a hot issue and knowledge fusion, especially for implicit knowledge discovery, becomes the core of knowledge processing and optimization in the system. In...Currently, knowledge-based sharing and service system has been a hot issue and knowledge fusion, especially for implicit knowledge discovery, becomes the core of knowledge processing and optimization in the system. In the research, a knowledge fusion framework based on agricultural ontology and fusion rules was pro- posed, including knowledge extraction, clearing and annotation modules based on a- gricultural ontology, fusion rule construction, choosing and evaluation modules based on agricultural ontology and knowledge fusion module for users' demands. Finally, the significance of the framework to system of agricultural knowledge services was proved with the help of a case.展开更多
Knowledge graphs(KGs)have been widely accepted as powerful tools for modeling the complex relationships between concepts and developing knowledge-based services.In recent years,researchers in the field of power system...Knowledge graphs(KGs)have been widely accepted as powerful tools for modeling the complex relationships between concepts and developing knowledge-based services.In recent years,researchers in the field of power systems have explored KGs to develop intelligent dispatching systems for increasingly large power grids.With multiple power grid dispatching knowledge graphs(PDKGs)constructed by different agencies,the knowledge fusion of different PDKGs is useful for providing more accurate decision supports.To achieve this,entity alignment that aims at connecting different KGs by identifying equivalent entities is a critical step.Existing entity alignment methods cannot integrate useful structural,attribute,and relational information while calculating entities’similarities and are prone to making many-to-one alignments,thus can hardly achieve the best performance.To address these issues,this paper proposes a collective entity alignment model that integrates three kinds of available information and makes collective counterpart assignments.This model proposes a novel knowledge graph attention network(KGAT)to learn the embeddings of entities and relations explicitly and calculates entities’similarities by adaptively incorporating the structural,attribute,and relational similarities.Then,we formulate the counterpart assignment task as an integer programming(IP)problem to obtain one-to-one alignments.We not only conduct experiments on a pair of PDKGs but also evaluate o ur model on three commonly used cross-lingual KGs.Experimental comparisons indicate that our model outperforms other methods and provides an effective tool for the knowledge fusion of PDKGs.展开更多
The recommendation algorithm based on collaborative filtering is currently the most successful recommendation method. It recommends items to theuser based on the known historical interaction data of the target user. ...The recommendation algorithm based on collaborative filtering is currently the most successful recommendation method. It recommends items to theuser based on the known historical interaction data of the target user. Furthermore,the combination of the recommended algorithm based on collaborative filtrationand other auxiliary knowledge base is an effective way to improve the performance of the recommended system, of which the Co-Factorization Model(CoFM) is one representative research. CoFM, a fusion recommendation modelcombining the collaborative filtering model FM and the graph embeddingmodel TransE, introduces the information of many entities and their relationsin the knowledge graph into the recommendation system as effective auxiliaryinformation. It can effectively improve the accuracy of recommendations andalleviate the problem of sparse user historical interaction data. Unfortunately,the graph-embedded model TransE used in the CoFM model cannot solve the1-N, N-1, and N-N problems well. To tackle this problem, a novel fusion recommendation model Joint Factorization Machines and TransH Model (JFMH) isproposed, which improves CoFM by replacing the TransE model with TransHmodel. A large number of experiments on two widely used benchmark data setsshow that compared with CoFM, JFMH has improved performance in terms ofitem recommendation and knowledge graph completion, and is more competitivethan multiple baseline methods.展开更多
With the rapid development and popularization of web services, the available information types and structure are becoming more and more complex and challenging. Actually web services involve the need for dynamic integ...With the rapid development and popularization of web services, the available information types and structure are becoming more and more complex and challenging. Actually web services involve the need for dynamic integration and transparent knowledge integration, in light of the urgent information changing track. Under this situation, the traditional search engine and information integration cannot finish this challenge, thereby bringing the opportunity for knowledge fusion and synchronization. This paper proposes a multi-matching strategy ontology mapping method for web information, i.e., ubiquitous ontology mapping method (U-Mapping), which can be viewed as a base collection of information on multiple ontologies made to appear anytime and everywhere. This approach is usually built independently by different information providers, avoiding the grammatical and semantic conflict. Finally, the ontology case information can be utilized under the consolidation of the U-Mapping, concerning language technology and machine learning methods.展开更多
Event extraction stands as a significant endeavor within the realm of information extraction,aspiring to automatically extract structured event information from vast volumes of unstructured text.Extracting event eleme...Event extraction stands as a significant endeavor within the realm of information extraction,aspiring to automatically extract structured event information from vast volumes of unstructured text.Extracting event elements from multi-modal data remains a challenging task due to the presence of a large number of images and overlapping event elements in the data.Although researchers have proposed various methods to accomplish this task,most existing event extraction models cannot address these challenges because they are only applicable to text scenarios.To solve the above issues,this paper proposes a multi-modal event extraction method based on knowledge fusion.Specifically,for event-type recognition,we use a meticulous pipeline approach that integrates multiple pre-trained models.This approach enables a more comprehensive capture of the multidimensional event semantic features present in military texts,thereby enhancing the interconnectedness of information between trigger words and events.For event element extraction,we propose a method for constructing a priori templates that combine event types with corresponding trigger words.This approach facilitates the acquisition of fine-grained input samples containing event trigger words,thus enabling the model to understand the semantic relationships between elements in greater depth.Furthermore,a fusion method for spatial mapping of textual event elements and image elements is proposed to reduce the category number overload and effectively achieve multi-modal knowledge fusion.The experimental results based on the CCKS 2022 dataset show that our method has achieved competitive results,with a comprehensive evaluation value F1-score of 53.4%for the model.These results validate the effectiveness of our method in extracting event elements from multi-modal data.展开更多
Learning from the Internet is becoming more and more convenient and attracting more and more people. How to obtain knowledge from massive data and construct high quality knowledge graph has become a research hot topic...Learning from the Internet is becoming more and more convenient and attracting more and more people. How to obtain knowledge from massive data and construct high quality knowledge graph has become a research hot topic. This paper proposes a new method of knowledge graph construction based on crowd-sourcing. Firstly, learners build the subgraphs to acquire knowledge through the crowd-sourcing task; secondly, we put forward the fusion strategy of knowledge subgraph, in which knowledge graph is converted into the adjacency matrix, and the weight of the knowledge relation is calculated by matrix operations, thus knowledge graph is constructed. Finally, experiments conducted on an open platform show that the accuracy and integrity of proposed method of constructing knowledge graph are higher and our new method exists potential value for online learning and self-regulated learning.展开更多
Objective To establish the knowledge graph of“disease-syndrome-symptom-method-formula”in Treatise on Febrile Diseases(Shang Han Lun,《伤寒论》)for reducing the fuzziness and uncertainty of data,and for laying a foun...Objective To establish the knowledge graph of“disease-syndrome-symptom-method-formula”in Treatise on Febrile Diseases(Shang Han Lun,《伤寒论》)for reducing the fuzziness and uncertainty of data,and for laying a foundation for later knowledge reasoning and its application.Methods Under the guidance of experts in the classical formula of traditional Chinese medicine(TCM),the method of“top-down as the main,bottom-up as the auxiliary”was adopted to carry out knowledge extraction,knowledge fusion,and knowledge storage from the five aspects of the disease,syndrome,symptom,method,and formula for the original text of Treatise on Febrile Diseases,and so the knowledge graph of Treatise on Febrile Diseases was constructed.On this basis,the knowledge structure query and the knowledge relevance query were realized in a visual manner.Results The knowledge graph of“disease-syndrome-symptom-method-formula”in the Treatise on Febrile Diseases was constructed,containing 6469 entities and 10911 relational triples,on which the query of entities and their relationships can be carried out and the query result can be visualized.Conclusion The knowledge graph of Treatise on Febrile Diseases systematically realizes its digitization of the knowledge system,and improves the completeness and accuracy of the knowledge representation,and the connection between“disease-syndrome-symptom-treatment-formula”,which is conducive to the sharing and reuse of knowledge can be obtained in a clear and efficient way.展开更多
A study on knowledge transfer in a mutli-agent organization is performed by applying the basic principle in physics such as the kinetic theory.Based on the theoretical analysis of the knowledge accumulation process an...A study on knowledge transfer in a mutli-agent organization is performed by applying the basic principle in physics such as the kinetic theory.Based on the theoretical analysis of the knowledge accumulation process and knowledge transfer attributes,a special type of knowledge field(KF)is introduced and the knowledge diffusion equation(KDE)is developed.The evolution of knowledge potential is modeled by lattice kinetic equation and verified by numerical experiments.The new equation-based modeling developed in this paper is meaningful to simulate and predict the knowledge transfer process in firms.The development of the lattice kinetic model(LKM)for knowledge transfer can contribute to the knowledge management theory,and the managers can also simulate the knowledge accumulation process by using the LKM.展开更多
Generally,knowledge extraction technology is used to obtain nodes and relationships of unstructured data and structured data,and then the data fuse with the original knowledge graph to achieve the extension of the kno...Generally,knowledge extraction technology is used to obtain nodes and relationships of unstructured data and structured data,and then the data fuse with the original knowledge graph to achieve the extension of the knowledge graph.Because the concepts and knowledge structures expressed on the Internet have problems of multi-source heterogeneity and low accuracy,it is usually difficult to achieve a good effect simply by using knowledge extraction technology.Considering that domain knowledge is highly dependent on the relevant expert knowledge,the method of this paper try to expand the domain knowledge through the crowdsourcing method.The method split the domain knowledge system into subgraph of knowledge according to corresponding concept,form subtasks with moderate granularity,and use the crowdsourcing technology for the acquisition and integration of knowledge subgraph to improve the knowledge system.展开更多
Emotion cause extraction(ECE)task that aims at extracting potential trigger events of certain emotions has attracted extensive attention recently.However,current work neglects the implicit emotion expressed without an...Emotion cause extraction(ECE)task that aims at extracting potential trigger events of certain emotions has attracted extensive attention recently.However,current work neglects the implicit emotion expressed without any explicit emotional keywords,which appears more frequently in application scenarios.The lack of explicit emotion information makes it extremely hard to extract emotion causes only with the local context.Moreover,an entire event is usually across multiple clauses,while existing work merely extracts cause events at clause level and cannot effectively capture complete cause event information.To address these issues,the events are first redefined at the tuple level and a span-based tuple-level algorithm is proposed to extract events from different clauses.Based on it,a corpus for implicit emotion cause extraction that tries to extract causes of implicit emotions is constructed.The authors propose a knowledge-enriched jointlearning model of implicit emotion recognition and implicit emotion cause extraction tasks(KJ-IECE),which leverages commonsense knowledge from ConceptNet and NRC_VAD to better capture connections between emotion and corresponding cause events.Experiments on both implicit and explicit emotion cause extraction datasets demonstrate the effectiveness of the proposed model.展开更多
Cyber Threat Intelligence(CTI)is a valuable resource for cybersecurity defense,but it also poses challenges due to its multi-source and heterogeneous nature.Security personnel may be unable to use CTI effectively to u...Cyber Threat Intelligence(CTI)is a valuable resource for cybersecurity defense,but it also poses challenges due to its multi-source and heterogeneous nature.Security personnel may be unable to use CTI effectively to understand the condition and trend of a cyberattack and respond promptly.To address these challenges,we propose a novel approach that consists of three steps.First,we construct the attack and defense analysis of the cybersecurity ontology(ADACO)model by integrating multiple cybersecurity databases.Second,we develop the threat evolution prediction algorithm(TEPA),which can automatically detect threats at device nodes,correlate and map multisource threat information,and dynamically infer the threat evolution process.TEPA leverages knowledge graphs to represent comprehensive threat scenarios and achieves better performance in simulated experiments by combining structural and textual features of entities.Third,we design the intelligent defense decision algorithm(IDDA),which can provide intelligent recommendations for security personnel regarding the most suitable defense techniques.IDDA outperforms the baseline methods in the comparative experiment.展开更多
In order to provide high-quality learning services,various online systems should possess the fundamental ability to predict the knowledge points and units to which a given test question belongs.The existing methods ty...In order to provide high-quality learning services,various online systems should possess the fundamental ability to predict the knowledge points and units to which a given test question belongs.The existing methods typically rely on manual labeling or traditional machine learning methods.Manual labeling methods have high time costs and high demands for human resources,while traditional machine learning methods only focus on the shallow features of the topics,ignoring the deep semantic relationship between the topic text and the knowledge point units.These two methods have relatively large limitations in practical applications.This paper proposes a convolutional neural network method combined with multiple features to predict the knowledge point units.We construct a binary classification dataset in the three grades of primary mathematics.Considering the supplementary role of Pinyin to Chinese text and the unique identification characteristics of Unicode encoding for characters,we obtain the Pinyin representation and the Unicode encoding representation of the original Chinese text.Then,we put the three representation methods into the convolutional neural network for training,obtain three kinds of semantic vectors,fuse them,and finally obtain higher-dimensional fusion features.Our experimental results demonstrate that our approach achieves good performance in predicting the knowledge units of test questions.展开更多
Parametric modeling of the impeller which drove a small wind device was built by knowledge fusion technology.NACA2410 airfoil blade was created by KF language.Using technology of UG/KF secondary development for the au...Parametric modeling of the impeller which drove a small wind device was built by knowledge fusion technology.NACA2410 airfoil blade was created by KF language.Using technology of UG/KF secondary development for the automatic modeling of wind turbine blade,the program can read in the airfoil data files automatically and the impeller model entity can be generated automatically.In order to modify the model,the aerodynamic characteristics of the impeller were analyzed for getting aerodynamic parameters by Fluent.The maximum force torch and best parameters of impeller were calculated.A physical prototype impeller was manufactured and the correctness of the design was verified,and the error of force torch between simulation and experimental results is about 10%.Parameterization design of the impeller model greatly improves the efficiency of modeling and flexibility of the CAD system.展开更多
文摘To improve the performance of the multiple classifier system, a new method of feature-decision level fusion is proposed based on knowledge discovery. In the new method, the base classifiers operate on different feature spaces and their types depend on different measures of between-class separability. The uncertainty measures corresponding to each output of each base classifier are induced from the established decision tables (DTs) in the form of mass function in the Dempster-Shafer theory (DST). Furthermore, an effective fusion framework is built at the feature-decision level on the basis of a generalized rough set model and the DST. The experiment for the classification of hyperspectral remote sensing images shows that the performance of the classification can be improved by the proposed method compared with that of plurality voting (PV).
基金Supported by Specialized Funds of CASIndividual Service System of Agricultural Information in Tibet(2012-J-08)+1 种基金Science and Technology Funds of CASMultimedia Information Service in Rural Area based on 3G Information Terminal(201219)~~
文摘Currently, knowledge-based sharing and service system has been a hot issue and knowledge fusion, especially for implicit knowledge discovery, becomes the core of knowledge processing and optimization in the system. In the research, a knowledge fusion framework based on agricultural ontology and fusion rules was pro- posed, including knowledge extraction, clearing and annotation modules based on a- gricultural ontology, fusion rule construction, choosing and evaluation modules based on agricultural ontology and knowledge fusion module for users' demands. Finally, the significance of the framework to system of agricultural knowledge services was proved with the help of a case.
基金supported by the National Key R&D Program of China(2018AAA0101502)the Science and Technology Project of SGCC(State Grid Corporation of China):Fundamental Theory of Human-in-the-Loop Hybrid-Augmented Intelligence for Power Grid Dispatch and Control。
文摘Knowledge graphs(KGs)have been widely accepted as powerful tools for modeling the complex relationships between concepts and developing knowledge-based services.In recent years,researchers in the field of power systems have explored KGs to develop intelligent dispatching systems for increasingly large power grids.With multiple power grid dispatching knowledge graphs(PDKGs)constructed by different agencies,the knowledge fusion of different PDKGs is useful for providing more accurate decision supports.To achieve this,entity alignment that aims at connecting different KGs by identifying equivalent entities is a critical step.Existing entity alignment methods cannot integrate useful structural,attribute,and relational information while calculating entities’similarities and are prone to making many-to-one alignments,thus can hardly achieve the best performance.To address these issues,this paper proposes a collective entity alignment model that integrates three kinds of available information and makes collective counterpart assignments.This model proposes a novel knowledge graph attention network(KGAT)to learn the embeddings of entities and relations explicitly and calculates entities’similarities by adaptively incorporating the structural,attribute,and relational similarities.Then,we formulate the counterpart assignment task as an integer programming(IP)problem to obtain one-to-one alignments.We not only conduct experiments on a pair of PDKGs but also evaluate o ur model on three commonly used cross-lingual KGs.Experimental comparisons indicate that our model outperforms other methods and provides an effective tool for the knowledge fusion of PDKGs.
基金funded by State Grid Shandong Electric Power Company Science and Technology Project Funding under Grant no.520613200001,520613180002,62061318C002Weihai Scientific Research and Innovation Fund(2020).
文摘The recommendation algorithm based on collaborative filtering is currently the most successful recommendation method. It recommends items to theuser based on the known historical interaction data of the target user. Furthermore,the combination of the recommended algorithm based on collaborative filtrationand other auxiliary knowledge base is an effective way to improve the performance of the recommended system, of which the Co-Factorization Model(CoFM) is one representative research. CoFM, a fusion recommendation modelcombining the collaborative filtering model FM and the graph embeddingmodel TransE, introduces the information of many entities and their relationsin the knowledge graph into the recommendation system as effective auxiliaryinformation. It can effectively improve the accuracy of recommendations andalleviate the problem of sparse user historical interaction data. Unfortunately,the graph-embedded model TransE used in the CoFM model cannot solve the1-N, N-1, and N-N problems well. To tackle this problem, a novel fusion recommendation model Joint Factorization Machines and TransH Model (JFMH) isproposed, which improves CoFM by replacing the TransE model with TransHmodel. A large number of experiments on two widely used benchmark data setsshow that compared with CoFM, JFMH has improved performance in terms ofitem recommendation and knowledge graph completion, and is more competitivethan multiple baseline methods.
文摘With the rapid development and popularization of web services, the available information types and structure are becoming more and more complex and challenging. Actually web services involve the need for dynamic integration and transparent knowledge integration, in light of the urgent information changing track. Under this situation, the traditional search engine and information integration cannot finish this challenge, thereby bringing the opportunity for knowledge fusion and synchronization. This paper proposes a multi-matching strategy ontology mapping method for web information, i.e., ubiquitous ontology mapping method (U-Mapping), which can be viewed as a base collection of information on multiple ontologies made to appear anytime and everywhere. This approach is usually built independently by different information providers, avoiding the grammatical and semantic conflict. Finally, the ontology case information can be utilized under the consolidation of the U-Mapping, concerning language technology and machine learning methods.
基金supported by the National Natural Science Foundation of China(Grant No.81973695)Discipline with Strong Characteristics of Liaocheng University-Intelligent Science and Technology(Grant No.319462208).
文摘Event extraction stands as a significant endeavor within the realm of information extraction,aspiring to automatically extract structured event information from vast volumes of unstructured text.Extracting event elements from multi-modal data remains a challenging task due to the presence of a large number of images and overlapping event elements in the data.Although researchers have proposed various methods to accomplish this task,most existing event extraction models cannot address these challenges because they are only applicable to text scenarios.To solve the above issues,this paper proposes a multi-modal event extraction method based on knowledge fusion.Specifically,for event-type recognition,we use a meticulous pipeline approach that integrates multiple pre-trained models.This approach enables a more comprehensive capture of the multidimensional event semantic features present in military texts,thereby enhancing the interconnectedness of information between trigger words and events.For event element extraction,we propose a method for constructing a priori templates that combine event types with corresponding trigger words.This approach facilitates the acquisition of fine-grained input samples containing event trigger words,thus enabling the model to understand the semantic relationships between elements in greater depth.Furthermore,a fusion method for spatial mapping of textual event elements and image elements is proposed to reduce the category number overload and effectively achieve multi-modal knowledge fusion.The experimental results based on the CCKS 2022 dataset show that our method has achieved competitive results,with a comprehensive evaluation value F1-score of 53.4%for the model.These results validate the effectiveness of our method in extracting event elements from multi-modal data.
基金supported by National Social Science Foundation project (17BXW065)Science and Technology Research project of Henan (14430051007)+1 种基金Reform Research Project of Higher Education of Henan (2014SJGLX007)Science and Technology Research project of Zhengzhou(141PPTGG368)
文摘Learning from the Internet is becoming more and more convenient and attracting more and more people. How to obtain knowledge from massive data and construct high quality knowledge graph has become a research hot topic. This paper proposes a new method of knowledge graph construction based on crowd-sourcing. Firstly, learners build the subgraphs to acquire knowledge through the crowd-sourcing task; secondly, we put forward the fusion strategy of knowledge subgraph, in which knowledge graph is converted into the adjacency matrix, and the weight of the knowledge relation is calculated by matrix operations, thus knowledge graph is constructed. Finally, experiments conducted on an open platform show that the accuracy and integrity of proposed method of constructing knowledge graph are higher and our new method exists potential value for online learning and self-regulated learning.
基金The Open Fund of Hunan University of Traditional Chinese Medicine for the First-Class Discipline of Traditional Chinese Medicine(2018ZYX66)the Science Research Project of Hunan Provincial Department of Education(20C1391)the Natural Science Foundation of Hunan Province(2020JJ4461)。
文摘Objective To establish the knowledge graph of“disease-syndrome-symptom-method-formula”in Treatise on Febrile Diseases(Shang Han Lun,《伤寒论》)for reducing the fuzziness and uncertainty of data,and for laying a foundation for later knowledge reasoning and its application.Methods Under the guidance of experts in the classical formula of traditional Chinese medicine(TCM),the method of“top-down as the main,bottom-up as the auxiliary”was adopted to carry out knowledge extraction,knowledge fusion,and knowledge storage from the five aspects of the disease,syndrome,symptom,method,and formula for the original text of Treatise on Febrile Diseases,and so the knowledge graph of Treatise on Febrile Diseases was constructed.On this basis,the knowledge structure query and the knowledge relevance query were realized in a visual manner.Results The knowledge graph of“disease-syndrome-symptom-method-formula”in the Treatise on Febrile Diseases was constructed,containing 6469 entities and 10911 relational triples,on which the query of entities and their relationships can be carried out and the query result can be visualized.Conclusion The knowledge graph of Treatise on Febrile Diseases systematically realizes its digitization of the knowledge system,and improves the completeness and accuracy of the knowledge representation,and the connection between“disease-syndrome-symptom-treatment-formula”,which is conducive to the sharing and reuse of knowledge can be obtained in a clear and efficient way.
基金supported by the National Natural Science Foundation of China(71472055 71871007)+2 种基金National Social Science Foundation of China(16AZD0006)Heilongjiang Philosophy and Social Science Research Project(19GLB087)the Fundamental Research Funds for the Central Universities(HIT.NSRIF.2019033)
文摘A study on knowledge transfer in a mutli-agent organization is performed by applying the basic principle in physics such as the kinetic theory.Based on the theoretical analysis of the knowledge accumulation process and knowledge transfer attributes,a special type of knowledge field(KF)is introduced and the knowledge diffusion equation(KDE)is developed.The evolution of knowledge potential is modeled by lattice kinetic equation and verified by numerical experiments.The new equation-based modeling developed in this paper is meaningful to simulate and predict the knowledge transfer process in firms.The development of the lattice kinetic model(LKM)for knowledge transfer can contribute to the knowledge management theory,and the managers can also simulate the knowledge accumulation process by using the LKM.
文摘Generally,knowledge extraction technology is used to obtain nodes and relationships of unstructured data and structured data,and then the data fuse with the original knowledge graph to achieve the extension of the knowledge graph.Because the concepts and knowledge structures expressed on the Internet have problems of multi-source heterogeneity and low accuracy,it is usually difficult to achieve a good effect simply by using knowledge extraction technology.Considering that domain knowledge is highly dependent on the relevant expert knowledge,the method of this paper try to expand the domain knowledge through the crowdsourcing method.The method split the domain knowledge system into subgraph of knowledge according to corresponding concept,form subtasks with moderate granularity,and use the crowdsourcing technology for the acquisition and integration of knowledge subgraph to improve the knowledge system.
基金National Natural Science Foundation of China,Grant/Award Numbers:61671064,61732005National Key Research&Development Program,Grant/Award Number:2018YFC0831700。
文摘Emotion cause extraction(ECE)task that aims at extracting potential trigger events of certain emotions has attracted extensive attention recently.However,current work neglects the implicit emotion expressed without any explicit emotional keywords,which appears more frequently in application scenarios.The lack of explicit emotion information makes it extremely hard to extract emotion causes only with the local context.Moreover,an entire event is usually across multiple clauses,while existing work merely extracts cause events at clause level and cannot effectively capture complete cause event information.To address these issues,the events are first redefined at the tuple level and a span-based tuple-level algorithm is proposed to extract events from different clauses.Based on it,a corpus for implicit emotion cause extraction that tries to extract causes of implicit emotions is constructed.The authors propose a knowledge-enriched jointlearning model of implicit emotion recognition and implicit emotion cause extraction tasks(KJ-IECE),which leverages commonsense knowledge from ConceptNet and NRC_VAD to better capture connections between emotion and corresponding cause events.Experiments on both implicit and explicit emotion cause extraction datasets demonstrate the effectiveness of the proposed model.
文摘Cyber Threat Intelligence(CTI)is a valuable resource for cybersecurity defense,but it also poses challenges due to its multi-source and heterogeneous nature.Security personnel may be unable to use CTI effectively to understand the condition and trend of a cyberattack and respond promptly.To address these challenges,we propose a novel approach that consists of three steps.First,we construct the attack and defense analysis of the cybersecurity ontology(ADACO)model by integrating multiple cybersecurity databases.Second,we develop the threat evolution prediction algorithm(TEPA),which can automatically detect threats at device nodes,correlate and map multisource threat information,and dynamically infer the threat evolution process.TEPA leverages knowledge graphs to represent comprehensive threat scenarios and achieves better performance in simulated experiments by combining structural and textual features of entities.Third,we design the intelligent defense decision algorithm(IDDA),which can provide intelligent recommendations for security personnel regarding the most suitable defense techniques.IDDA outperforms the baseline methods in the comparative experiment.
基金supported by the National Natural Science Foundation of China(Nos.62377009,62102136,61902114,61977021)the Key R&D projects in Hubei Province(Nos.2021BAA188,2021BAA184,2022BAA044)the Ministry of Education’s Youth Fund for Humanities and Social Sciences Project(No.19YJC880036)。
文摘In order to provide high-quality learning services,various online systems should possess the fundamental ability to predict the knowledge points and units to which a given test question belongs.The existing methods typically rely on manual labeling or traditional machine learning methods.Manual labeling methods have high time costs and high demands for human resources,while traditional machine learning methods only focus on the shallow features of the topics,ignoring the deep semantic relationship between the topic text and the knowledge point units.These two methods have relatively large limitations in practical applications.This paper proposes a convolutional neural network method combined with multiple features to predict the knowledge point units.We construct a binary classification dataset in the three grades of primary mathematics.Considering the supplementary role of Pinyin to Chinese text and the unique identification characteristics of Unicode encoding for characters,we obtain the Pinyin representation and the Unicode encoding representation of the original Chinese text.Then,we put the three representation methods into the convolutional neural network for training,obtain three kinds of semantic vectors,fuse them,and finally obtain higher-dimensional fusion features.Our experimental results demonstrate that our approach achieves good performance in predicting the knowledge units of test questions.
基金Project(gjd-09041)supported by the Natural Science Foundation of Shanghai Municipal Education Commission,China
文摘Parametric modeling of the impeller which drove a small wind device was built by knowledge fusion technology.NACA2410 airfoil blade was created by KF language.Using technology of UG/KF secondary development for the automatic modeling of wind turbine blade,the program can read in the airfoil data files automatically and the impeller model entity can be generated automatically.In order to modify the model,the aerodynamic characteristics of the impeller were analyzed for getting aerodynamic parameters by Fluent.The maximum force torch and best parameters of impeller were calculated.A physical prototype impeller was manufactured and the correctness of the design was verified,and the error of force torch between simulation and experimental results is about 10%.Parameterization design of the impeller model greatly improves the efficiency of modeling and flexibility of the CAD system.