Pure phase, regular shape and well crystallized nanorods of p-type semiconductor CaFeOhave been fabricated for the first time by a facile molten salt assisted method, as confirmed by XRD, TEM, SEM and HRTEM. UV-vis di...Pure phase, regular shape and well crystallized nanorods of p-type semiconductor CaFeOhave been fabricated for the first time by a facile molten salt assisted method, as confirmed by XRD, TEM, SEM and HRTEM. UV-vis diffuse reflectance spectra and Mott–Schottky plots show that the band structure of the CaFeOnanorods is narrower than that of the CaFeOnanoparticles synthesized by conventional method. The enhancement of the visible-light absorption is due to narrowness of the band gap in CaFeOnanorods. The appropriate ratio between the molten salt and the CaFeOprecursors plays an important role in inhibiting the growth of the crystals along the(201) plane to give the desired nanorod morphology. This work not only demonstrates that highly pure p-type CaFeOsemiconductor with tunable band structure and morphology could be obtained using the molten salt strategy, but also affirms that the bandgap of a semiconductor may be tunable by monitoring the growth of a particular crystal plane.Furthermore, the facile eutectic molten salt method developed in this work may be further extended to fabricate some other semiconductor nanomaterials with a diversity of morphologies.展开更多
Bismuth titanate (Bi4Ti3O12) platelets were prepared by molten salt method in a new salt system of CaCl2·NaCl at 650-750℃, using bismuth nitrate pentahydrate (Bi (NO3)3·H2O) and titanium butoxide (Ti...Bismuth titanate (Bi4Ti3O12) platelets were prepared by molten salt method in a new salt system of CaCl2·NaCl at 650-750℃, using bismuth nitrate pentahydrate (Bi (NO3)3·H2O) and titanium butoxide (Ti (OC4H9)4) as raw materials. The synthesis temperature of Bi4Ti3O12 platelets was decreased to 650℃ from 900-1100℃. The phase compositions and crystalline morphology of Bi4Ti3O12 platelets were investigated by XRD and SEM. The experimental results indicate that Bi4Ti3O12 platelets containing tetragonal and orthorhombic phase with the size of 1-3μm can be synthesized at 650℃ for 2 h, and the orthorhombic phase becomes the dominant phase at 750℃ for 5 h. The size and proportion of Bi4Ti3O12 platelets increase with the increment of the calcining temperature and holding time. The proportion of platelets increases to about ninety percent, and the platelets grow up to about 3-10μm at 750℃ for 5 h from 1-2μm at 650℃ for 2 h. This technical route provides a new low-temperature molten salt system for preparing platelets by molten salt methods.展开更多
With LiAc-2H2O as Li precursor,pure olivine phase LiFePO4/C was synthesized at a relatively low temperature(650 ℃) and short sintering period(4 h) by molten salt carbothermal reduction method.Scanning electron mi...With LiAc-2H2O as Li precursor,pure olivine phase LiFePO4/C was synthesized at a relatively low temperature(650 ℃) and short sintering period(4 h) by molten salt carbothermal reduction method.Scanning electron micrograph shows that particle size of the product is about 1μm,smaller than that of the sample synthesized with Li2CO3 as Li precursor.Electrochemical measurements prove that LiFePO4/C obtained from LiAc-2H2O shows high capacity.The initial discharge capacities are 148 mA-h/g at 0.5C rate and 115 mA-h/g at 5C rate,respectively.After 50 cycles,the capacity retention ratios are 93% and 89% at 0.5C rate and 5C rate,respectively.展开更多
In this work,we firstly synthesized a CeO_(2)/C_(3)N_(4) photocatalyst with Z-scheme heterojunction by a facile LiC-KCI molten salt method.The synthesized catalyst has an excellent quality for removing organic polluti...In this work,we firstly synthesized a CeO_(2)/C_(3)N_(4) photocatalyst with Z-scheme heterojunction by a facile LiC-KCI molten salt method.The synthesized catalyst has an excellent quality for removing organic pollution of dyes and antibiotics in wastewater.As an example,the CeCN-1:5 prepared with a mass ratio of Ce_(2)(CO_(3))_(3)·xH_(2)O:C_(3)H_(3)N_(6)=1:5 exhibits a methylene blue(MB)removal capacity of 100%within 90 min and tetracycline(TC)removal capacity of 94.6%.After 4 cycles,the CeCN-1:5 keeps a removal efficiency of nearly 100%in 150 min for MB and 85.7%for TC.The kinetics study reveals that the MB removal process with the CeCN-1:5 fits the modified Elovich model with strong adsorption while TC removal fits the first-order model.The large surface area(238 m^(2)/g)and negative zeta potential(-39.3 mV)of CeCN-1:5 contribute to superior adsorption capacity to MB.However,the adsorption of TC is restricted due to the positive surface/pore potential in acidic solution.CeCN-1:5has combined Z-scheme heterojunction and exhibits a low recombination rate of electrons(e^(-))/holes(h^(+))and the photo-generated active radicals of·OH/·O_(2)^(-)that promotes the photocatalytic performance.This novel CeO_(2)/C_(3)N_(4) photocatalyst with an excellent photocatalysis removal activity has an enormous potential for photocatalytic applications.展开更多
Carbon contamination and the formation of low-valence oxides limit the preparation of refractory metals by molten salt electrolysis.In this paper,a liquid Zn cathode is adopted for the electrochemical reduction of sol...Carbon contamination and the formation of low-valence oxides limit the preparation of refractory metals by molten salt electrolysis.In this paper,a liquid Zn cathode is adopted for the electrochemical reduction of soluble K2CrO4 to metallic Cr in CaCl2-KCl molten salt.It is found that CrO4^2-can be directly electrochemically reduced to Cr via a six-electron-transfer step and low-valence Cr oxides is hardly produced.The reduction rate is obviously increased from 16.7 mgCrh^-1cm^-2 on the solid Mo cathode to58.7 mgCrh-1cm-2on liquid Zn cathode.The electrodeposited Cr is distributed in liquid Zn cathode.Carbon contamination is effectively avoided due to the negligible solubility of carbon in the liquid Zn cathode.Furthermore,Cr can be effectively separated and enriched to the bottom of liquid Zn under supergravity field,realizing the efficient acquisition of metallic Cr and recycling of liquid Zn.The method herein provides a promising route for the preparation of refractory metals with high-purity by molten salt electrolysis.展开更多
基金supports from the National Natural Science Foundation of China(nos.21473189 and21503100)the 973 National Basic Research Program of China(no.2014CB239401)the Natural Science Foundation of Jiangxi Province of China(no.20151BAB213010)
文摘Pure phase, regular shape and well crystallized nanorods of p-type semiconductor CaFeOhave been fabricated for the first time by a facile molten salt assisted method, as confirmed by XRD, TEM, SEM and HRTEM. UV-vis diffuse reflectance spectra and Mott–Schottky plots show that the band structure of the CaFeOnanorods is narrower than that of the CaFeOnanoparticles synthesized by conventional method. The enhancement of the visible-light absorption is due to narrowness of the band gap in CaFeOnanorods. The appropriate ratio between the molten salt and the CaFeOprecursors plays an important role in inhibiting the growth of the crystals along the(201) plane to give the desired nanorod morphology. This work not only demonstrates that highly pure p-type CaFeOsemiconductor with tunable band structure and morphology could be obtained using the molten salt strategy, but also affirms that the bandgap of a semiconductor may be tunable by monitoring the growth of a particular crystal plane.Furthermore, the facile eutectic molten salt method developed in this work may be further extended to fabricate some other semiconductor nanomaterials with a diversity of morphologies.
文摘Bismuth titanate (Bi4Ti3O12) platelets were prepared by molten salt method in a new salt system of CaCl2·NaCl at 650-750℃, using bismuth nitrate pentahydrate (Bi (NO3)3·H2O) and titanium butoxide (Ti (OC4H9)4) as raw materials. The synthesis temperature of Bi4Ti3O12 platelets was decreased to 650℃ from 900-1100℃. The phase compositions and crystalline morphology of Bi4Ti3O12 platelets were investigated by XRD and SEM. The experimental results indicate that Bi4Ti3O12 platelets containing tetragonal and orthorhombic phase with the size of 1-3μm can be synthesized at 650℃ for 2 h, and the orthorhombic phase becomes the dominant phase at 750℃ for 5 h. The size and proportion of Bi4Ti3O12 platelets increase with the increment of the calcining temperature and holding time. The proportion of platelets increases to about ninety percent, and the platelets grow up to about 3-10μm at 750℃ for 5 h from 1-2μm at 650℃ for 2 h. This technical route provides a new low-temperature molten salt system for preparing platelets by molten salt methods.
基金Project(21001041) supported by the National Natural Science Foundation of ChinaProject(102300410256) supported by Henan Province Foundation and Advanced Technology Research Program,China+1 种基金Project(102102210183) supported by the Key Scientific and Technological Research Project of Henan Province,ChinaProject(2011B480005) supported by the Natural Science Research Project of Henan Province,China
文摘With LiAc-2H2O as Li precursor,pure olivine phase LiFePO4/C was synthesized at a relatively low temperature(650 ℃) and short sintering period(4 h) by molten salt carbothermal reduction method.Scanning electron micrograph shows that particle size of the product is about 1μm,smaller than that of the sample synthesized with Li2CO3 as Li precursor.Electrochemical measurements prove that LiFePO4/C obtained from LiAc-2H2O shows high capacity.The initial discharge capacities are 148 mA-h/g at 0.5C rate and 115 mA-h/g at 5C rate,respectively.After 50 cycles,the capacity retention ratios are 93% and 89% at 0.5C rate and 5C rate,respectively.
基金supported by National Natural Science Foundation of China(52164025,51804088,U1812402)Basic Research Program from Science&Technology Department of Guizhou Province([2020]1Y219,[2019]1082)。
文摘In this work,we firstly synthesized a CeO_(2)/C_(3)N_(4) photocatalyst with Z-scheme heterojunction by a facile LiC-KCI molten salt method.The synthesized catalyst has an excellent quality for removing organic pollution of dyes and antibiotics in wastewater.As an example,the CeCN-1:5 prepared with a mass ratio of Ce_(2)(CO_(3))_(3)·xH_(2)O:C_(3)H_(3)N_(6)=1:5 exhibits a methylene blue(MB)removal capacity of 100%within 90 min and tetracycline(TC)removal capacity of 94.6%.After 4 cycles,the CeCN-1:5 keeps a removal efficiency of nearly 100%in 150 min for MB and 85.7%for TC.The kinetics study reveals that the MB removal process with the CeCN-1:5 fits the modified Elovich model with strong adsorption while TC removal fits the first-order model.The large surface area(238 m^(2)/g)and negative zeta potential(-39.3 mV)of CeCN-1:5 contribute to superior adsorption capacity to MB.However,the adsorption of TC is restricted due to the positive surface/pore potential in acidic solution.CeCN-1:5has combined Z-scheme heterojunction and exhibits a low recombination rate of electrons(e^(-))/holes(h^(+))and the photo-generated active radicals of·OH/·O_(2)^(-)that promotes the photocatalytic performance.This novel CeO_(2)/C_(3)N_(4) photocatalyst with an excellent photocatalysis removal activity has an enormous potential for photocatalytic applications.
基金supported by the National Natural Science Foundation of China (51804221, 51474200, 91845113)Project funded by China Postdoctoral Science Foundation (2018M642906)the Fundamental Research Funds for the Central Universities (FRF-TP18-010B1)
文摘Carbon contamination and the formation of low-valence oxides limit the preparation of refractory metals by molten salt electrolysis.In this paper,a liquid Zn cathode is adopted for the electrochemical reduction of soluble K2CrO4 to metallic Cr in CaCl2-KCl molten salt.It is found that CrO4^2-can be directly electrochemically reduced to Cr via a six-electron-transfer step and low-valence Cr oxides is hardly produced.The reduction rate is obviously increased from 16.7 mgCrh^-1cm^-2 on the solid Mo cathode to58.7 mgCrh-1cm-2on liquid Zn cathode.The electrodeposited Cr is distributed in liquid Zn cathode.Carbon contamination is effectively avoided due to the negligible solubility of carbon in the liquid Zn cathode.Furthermore,Cr can be effectively separated and enriched to the bottom of liquid Zn under supergravity field,realizing the efficient acquisition of metallic Cr and recycling of liquid Zn.The method herein provides a promising route for the preparation of refractory metals with high-purity by molten salt electrolysis.