文摘数据驱动的多元化发展导致数据异构性增强、维度提升和特征量规模扩大,给贸易经济分析带来更大挑战。为了提高贸易经济分析的科学性,采用非平行超平面支持向量机算法(support vector machine,SVM)对贸易经济进行预测分析。首先,根据贸易经济影响因素进行主成分分析,获取影响贸易经济的关键特征,并对特征进行量化和去噪处理。然后,采用广义特征值最接近支持向量机(proximal support vector machine via generalized eigenvalues,GEPSVM)进行贸易经济预测分类。根据预测指标要求,选择核函数GEPSVM算法(KGEPSVM算法)对分类的非平行超平面求解,通过类别划分函数获得经济预测结果。实证分析表明,对比常用的非平行超平面支持向量机算法,所提算法的贸易经济预测性能更优,而且在常用贸易经济指标的预测中,表现出较高预测精度和稳定性。