The Shanghai high-repetition-rate X-ray free-electron laser and extreme light facility(SHINE)operates at a maximum repetition rate of 1 MHz.Kicker magnets are key components that distribute electron bunches into three...The Shanghai high-repetition-rate X-ray free-electron laser and extreme light facility(SHINE)operates at a maximum repetition rate of 1 MHz.Kicker magnets are key components that distribute electron bunches into three different undulator lines in a bunch-by-bunch mode.The kicker field width must be less than the time interval between bunches.A lumpedinductance kicker prototype was developed using a vacuum chamber with a single-turn coil.The full magnetic field strength was 0.005 T.This paper presents the requirements,design considerations,design parameters,magnetic field calculations,and measurements of the kicker magnets.The relevant experimental results are also presented.The pulse width of the magnetic field was approximately 600 ns,and the maximum operation repetition rate was 1 MHz.The developed kicker satisfies the requirements for the SHINE project.Finally,numerous recommendations for the future optimization of kicker magnets are provided.展开更多
A kicker is a critical component for beam injection and accumulation in circular particle accelerators. A ceramic slat kicker plated with a TiN conductive coating was applied in the Beijing Electron Positron Collider ...A kicker is a critical component for beam injection and accumulation in circular particle accelerators. A ceramic slat kicker plated with a TiN conductive coating was applied in the Beijing Electron Positron Collider (BEPCII). However, the ceramic slat kicker has experienced several sudden malfunctions during the operation of the BEPCII in the past. With a reliable kicker structure, a three-metal-strip kicker can substitute the original ceramic slat kicker to maintain the operational stability of the BEPCII. A comparison of the numerical simulation was conducted for three kicker models, demonstrating the comprehensive advantage of the three-metal-strip kicker. Furthermore, impedance bench measurements were conducted on a prototype of a three-metal-strip kicker. The longitudinal beam-coupling impedance was measured using a vector network analyzer via the coaxial wire method. A satisfactory agreement was obtained between the numerical simulations and measurements. Based on the numerical simulation data, the loss factor was 0.01721 V/pC, and the effective impedance was 3.59 mΩ(σ=10 mm).The simulation of the heat deposition on each part of the kicker demonstrated that 84.4%of the parasitic loss of the beam was deposited on the metal strips, and the total heat deposition power on the kicker was between 113.3 and 131.5 W. The obtained heat deposition powers can be considered as a reference for establishing the cooling system.展开更多
华中科技大学在研的质子治疗装置(Huazhong University of Science and Technology Proton Therapy Facility,HUST-PTF)中,一套位于降能器上游的Kicker磁铁被用于点扫描过程及治疗安全的快速束流开启/关断。为测量该Kicker磁铁的积分场...华中科技大学在研的质子治疗装置(Huazhong University of Science and Technology Proton Therapy Facility,HUST-PTF)中,一套位于降能器上游的Kicker磁铁被用于点扫描过程及治疗安全的快速束流开启/关断。为测量该Kicker磁铁的积分场均匀度及磁场动态特性,设计并研制了一套基于电磁感应法的Kicker磁铁测磁系统。测磁系统分别采用长线圈和印制电路板(Printed Circuit Boards,PCB)线圈两种方法获取感应电压,通过模拟/数字积分器对感应电压进行积分处理。经过实验对比,采用几何精度更高的PCB线圈和受零漂影响较小的模拟积分器作为最终方案进行测试;磁场上升/下降时间小于100μs,积分场大于0.0252 T·m,均匀度好于1%,均匀度最大标准差0.006%,测磁系统整体误差小于0.1%,表明Kicker磁铁及其测磁系统均满足设计指标。展开更多
The kicker system in the Heavy Ion Research Facility in Lanzhou (HIRFL) plays an important role in beam extraction and injection between two cooling storage rings (CSRs). The old kicker control system which has been o...The kicker system in the Heavy Ion Research Facility in Lanzhou (HIRFL) plays an important role in beam extraction and injection between two cooling storage rings (CSRs). The old kicker control system which has been operated over 5 years cannot satisfy the requirements of current special physics experiments. The main reason is the 5 ns time precision restricts the improvement of the precision for the phase detection of the beam bunches.展开更多
The cell circuit design and test of inductive adder pulse generator for kicker magnet are presented in the paper.The 3.3kV IGBT,a large dimension nanocrystalline core and a 2.5kV 50uF energy storage capacitor are used...The cell circuit design and test of inductive adder pulse generator for kicker magnet are presented in the paper.The 3.3kV IGBT,a large dimension nanocrystalline core and a 2.5kV 50uF energy storage capacitor are used. The multi-channel trigger IGBT driver board is designed.IGBT failures under short circuit condition and protection scheme are explored.The multi-cell prototype is designed.The waveforms of experiments are presented.It turns out that the rise and fall time of the output pulse is fast and the pulse width is adjustable.The maximum current of pulse reaches 2kA.It satisfies the higher requirement of beam injection technology.展开更多
A 40kV/6kA pulsed power supply was designed for the Rapid Cycling Synchrotron(RCS)extraction kicker magnet of the China Spallation Neutron Source.The calculation of the pulsed power supply's parameters,the design ...A 40kV/6kA pulsed power supply was designed for the Rapid Cycling Synchrotron(RCS)extraction kicker magnet of the China Spallation Neutron Source.The calculation of the pulsed power supply's parameters,the design of power supply's system,the optimization of pulse forming network(PFN)are introduced in this paper.The magnet current pulse waveform is simulated by PSpice program in the situation of 36.5kV charging voltage.The simulation explains the influence of the PFN section number and the transmission cable length on the magnet current pulse.展开更多
High time-stability performance of the injection kicker system is important for the Beijing Electron Positron Collider Upgrade Project (BEPCⅡ),with jitter and drift less than±5ns.In order to compensate the delay...High time-stability performance of the injection kicker system is important for the Beijing Electron Positron Collider Upgrade Project (BEPCⅡ),with jitter and drift less than±5ns.In order to compensate the delay time drift of thyratron on the kicker pulsed power supply,a drift stabilizer is developed.The test results meet the demand of design by regulation resolution=1ns,jitter+drift<2ns in 8 hours.The detailed design of the time-drift stabilizer will be described in this paper.展开更多
基金This work was supported by the Shanghai Municipal Science and Technology Major Project(No.2017SHZDZX02)the National Natural Science Foundation of China(No.12005282)+1 种基金the Youth Innovation Promotion Association of the Chinese Academy of Sciences(No.2021283)the Shanghai Pilot Program for Basic Research—Chinese Academy of Science,Shanghai Branch(JCYJSHFY-2021-010).
文摘The Shanghai high-repetition-rate X-ray free-electron laser and extreme light facility(SHINE)operates at a maximum repetition rate of 1 MHz.Kicker magnets are key components that distribute electron bunches into three different undulator lines in a bunch-by-bunch mode.The kicker field width must be less than the time interval between bunches.A lumpedinductance kicker prototype was developed using a vacuum chamber with a single-turn coil.The full magnetic field strength was 0.005 T.This paper presents the requirements,design considerations,design parameters,magnetic field calculations,and measurements of the kicker magnets.The relevant experimental results are also presented.The pulse width of the magnetic field was approximately 600 ns,and the maximum operation repetition rate was 1 MHz.The developed kicker satisfies the requirements for the SHINE project.Finally,numerous recommendations for the future optimization of kicker magnets are provided.
基金supported by the National Natural Science Foundation of China (Nos.Y8113C005C and U1832132)。
文摘A kicker is a critical component for beam injection and accumulation in circular particle accelerators. A ceramic slat kicker plated with a TiN conductive coating was applied in the Beijing Electron Positron Collider (BEPCII). However, the ceramic slat kicker has experienced several sudden malfunctions during the operation of the BEPCII in the past. With a reliable kicker structure, a three-metal-strip kicker can substitute the original ceramic slat kicker to maintain the operational stability of the BEPCII. A comparison of the numerical simulation was conducted for three kicker models, demonstrating the comprehensive advantage of the three-metal-strip kicker. Furthermore, impedance bench measurements were conducted on a prototype of a three-metal-strip kicker. The longitudinal beam-coupling impedance was measured using a vector network analyzer via the coaxial wire method. A satisfactory agreement was obtained between the numerical simulations and measurements. Based on the numerical simulation data, the loss factor was 0.01721 V/pC, and the effective impedance was 3.59 mΩ(σ=10 mm).The simulation of the heat deposition on each part of the kicker demonstrated that 84.4%of the parasitic loss of the beam was deposited on the metal strips, and the total heat deposition power on the kicker was between 113.3 and 131.5 W. The obtained heat deposition powers can be considered as a reference for establishing the cooling system.
文摘华中科技大学在研的质子治疗装置(Huazhong University of Science and Technology Proton Therapy Facility,HUST-PTF)中,一套位于降能器上游的Kicker磁铁被用于点扫描过程及治疗安全的快速束流开启/关断。为测量该Kicker磁铁的积分场均匀度及磁场动态特性,设计并研制了一套基于电磁感应法的Kicker磁铁测磁系统。测磁系统分别采用长线圈和印制电路板(Printed Circuit Boards,PCB)线圈两种方法获取感应电压,通过模拟/数字积分器对感应电压进行积分处理。经过实验对比,采用几何精度更高的PCB线圈和受零漂影响较小的模拟积分器作为最终方案进行测试;磁场上升/下降时间小于100μs,积分场大于0.0252 T·m,均匀度好于1%,均匀度最大标准差0.006%,测磁系统整体误差小于0.1%,表明Kicker磁铁及其测磁系统均满足设计指标。
文摘The kicker system in the Heavy Ion Research Facility in Lanzhou (HIRFL) plays an important role in beam extraction and injection between two cooling storage rings (CSRs). The old kicker control system which has been operated over 5 years cannot satisfy the requirements of current special physics experiments. The main reason is the 5 ns time precision restricts the improvement of the precision for the phase detection of the beam bunches.
文摘The cell circuit design and test of inductive adder pulse generator for kicker magnet are presented in the paper.The 3.3kV IGBT,a large dimension nanocrystalline core and a 2.5kV 50uF energy storage capacitor are used. The multi-channel trigger IGBT driver board is designed.IGBT failures under short circuit condition and protection scheme are explored.The multi-cell prototype is designed.The waveforms of experiments are presented.It turns out that the rise and fall time of the output pulse is fast and the pulse width is adjustable.The maximum current of pulse reaches 2kA.It satisfies the higher requirement of beam injection technology.
文摘A 40kV/6kA pulsed power supply was designed for the Rapid Cycling Synchrotron(RCS)extraction kicker magnet of the China Spallation Neutron Source.The calculation of the pulsed power supply's parameters,the design of power supply's system,the optimization of pulse forming network(PFN)are introduced in this paper.The magnet current pulse waveform is simulated by PSpice program in the situation of 36.5kV charging voltage.The simulation explains the influence of the PFN section number and the transmission cable length on the magnet current pulse.
文摘High time-stability performance of the injection kicker system is important for the Beijing Electron Positron Collider Upgrade Project (BEPCⅡ),with jitter and drift less than±5ns.In order to compensate the delay time drift of thyratron on the kicker pulsed power supply,a drift stabilizer is developed.The test results meet the demand of design by regulation resolution=1ns,jitter+drift<2ns in 8 hours.The detailed design of the time-drift stabilizer will be described in this paper.