In this study,a novel absorpent(MSAR600℃)with a hydrophobic surface and hierarchical porous structure for the removal of kitchen oil was facilely fabricated from the macroalgae,laver(Porphyra haitanensis)by incorpor-...In this study,a novel absorpent(MSAR600℃)with a hydrophobic surface and hierarchical porous structure for the removal of kitchen oil was facilely fabricated from the macroalgae,laver(Porphyra haitanensis)by incorpor-ating high-temperature carbonization and alkyl polyglucosides(APG)and rhamnolipid(RL)surfactants modifi-cation.The characterization results showed MSAR600℃ possessed a louts-leaf-like papillae microstructure with high contact angle(137.5°),abundant porous structure with high specific surface area(23.4 m^(2)/g),and various oxygen-containing functional groups(-OH,C=O,C-O).Batch adsorption experiments were conducted to inves-tigate the effect of adsorption time,temperature,pH,and absorbent dose on kitchen oil adsorption performance.Then the practical application for the removal of kitchen oil using MSAR600℃ was also performed.The results showed that MSAR600℃ had a higher removal efficiency for kitchen oil(75.98%),compared with the commercial detergent(72.3%).This study demonstrates an example of fabricating a green tableware detergent for enhanced removal performance of kitchen oil.展开更多
Studying the covers of the three editions of The Kitchen God’s Wife by Amy Tan,a famous female Chinese American writer,the author finds Chinese cultural elements stood out in publishers’earliest recommendations,but ...Studying the covers of the three editions of The Kitchen God’s Wife by Amy Tan,a famous female Chinese American writer,the author finds Chinese cultural elements stood out in publishers’earliest recommendations,but later were replaced by immigrant mother-daughter relationship,and then were overwhelmed by the concern for human beings.It is interesting that this change fits the changing focuses of Chinese American writers in the 21st century.展开更多
To evaluate the influence of lactic acid on the methanogenesis, anaerobic digestion of kitchen wastes was firstly conducted in a two-phase anaerobic digestion process, and performance of two digesters fed with lactic ...To evaluate the influence of lactic acid on the methanogenesis, anaerobic digestion of kitchen wastes was firstly conducted in a two-phase anaerobic digestion process, and performance of two digesters fed with lactic acid and glucose was subsequently compared. The results showed that the lactic acid was the main fermentation products of hydrolysis-acidification stage in the two-phase anaerobic digestion process for kitchen wastes. The lactic acid concentration constituted approximately 50% of the chemical oxygen demand (COD) concentration in the hydrolysis-acidification liquid. The maximum organic loading rate was lower in the digester fed with lactic acid than that fed with glucose. Volatile fatty acids (VFAs) and COD removal were deteriorated in the methanogenic reactor fed with lactic acid compared to that fed with glucose. The specific methanogenic activity (SMA) declined to 0.343 g COD/(gVSS-d) when the COD loading were designated as 18.8 g/(L-d) in the digester fed with lactic acid. The propionic acid accumulation occurred due to the high concentration of lactic acid fed. It could be concluded that avoiding the presence of the lactic acid is necessary in the hydrolysis-acidification process for the improvement of the two-phase anaerobic digestion process of kitchen wastes.展开更多
A new kind of thermoelectric heat pump water heater for kitchens exhaust heat recovery was presented,and its performances were investigated under different operating voltages.The experiment results show that the coeff...A new kind of thermoelectric heat pump water heater for kitchens exhaust heat recovery was presented,and its performances were investigated under different operating voltages.The experiment results show that the coefficient of performance decreases and the temperature difference between the hot and cold sides becomes larger with the increase of the operating voltage,but the heating time becomes short.The higher the temperature of water,the greater the temperature difference between the hot and cold sides,leading to a smaller coefficient of performance.Under an exhaust temperature of 36 ℃,the coefficient of performance decreases from 1.66 to 1.22 when the temperature of water increases from 28 ℃ to 46 ℃ with operating voltage 16 V.Performance tests illustrate that,compared with the conventional electrical water heaters,the new kind of thermoelectric heat pump water heater is more coefficient.展开更多
Engineering properties of municipal solid waste (MSW) depend largely on the waste's initial compositionand degree of degradation. MSWs in developing countries usually have a high kitchen waste content(called HKWC ...Engineering properties of municipal solid waste (MSW) depend largely on the waste's initial compositionand degree of degradation. MSWs in developing countries usually have a high kitchen waste content(called HKWC MSW). After comparing and analyzing the laboratory and field test results of physicalcomposition, hydraulic properties, gas generation and gas permeability, and mechanical properties forHKWC MSW and low kitchen waste content MSW (called LKWC MSW), the following findings wereobtained: (1) HKWC MSW has a higher initial water content (IWC) than LKWC MSW, but the field capacitiesof decomposed HKWC and LKWC MSWs are similar; (2) the hydraulic conductivity and gaspermeability for HKWC MSW are both an order of magnitude smaller than those for LKWC MSW; (3)compared with LKWC MSW, HKWC MSW has a higher landfill gas (LFG) generation rate but a shorterduration and a lower potential capacity; (4) the primary compression feature for decomposed HKWCMSW is similar to that of decomposed LKWC MSW, but the compression induced by degradation ofHKWC MSW is greater than that of LKWC MSW; and (5) the shear strength of HKWC MSW changessignificantly with time and strain. Based on the differences of engineering properties between these twokinds of MSWs, the geo-environmental issues in HKWC MSW landfills were analyzed, including highleachate production, high leachate mounds, low LFG collection efficiency, large settlement and slopestability problem, and corresponding advice for the management and design of HKWC MSW landfills wasrecommended.展开更多
The Lukeqin structural belt is the main heavy oil accumulation zone in the Turpan-Hami Basin. The recent discovery of light oil in the Triassic indicates that there may be multiple source kitchens contributing to the ...The Lukeqin structural belt is the main heavy oil accumulation zone in the Turpan-Hami Basin. The recent discovery of light oil in the Triassic indicates that there may be multiple source kitchens contributing to the oil accumulation. According to oil geochemical analysis and oil-source correlation, the oil in deep and shallow reservoirs of the Lukeqin Oilfield presents different physical and saturated hydrocarbon mass spectrum characteristics. The Triassic heavy oil is from the northern Upper Permian lacustrine source rocks, and the light oil represented by the Yudong-9 Well is from the northwestern Lower Jurassic coal-measure source rocks. The timing of oil charging was determined by K/Ar isotope dating, reservoir fluid inclusion analysis and the evolution history of different source rocks. In summary, the accumulation process consists of two stages. From the end of Triassic to early Jurassic, the northern Permian source kitchen generated a considerable amount of oil, which was finally degraded to heavy oil, migrated to the south and then accumulated. The northwestern Jurassic coal-measure source kitchen began to generate oil at the end of Cretaceous, while the northern source kitchen could only generate a little hydrocarbon. The heavy oil and the light oil have different source rock locations, migration directions and accumulation times. The migration of hydrocarbon source kitchens affects the distribution of heavy oil and light oil reservoirs at the present time.展开更多
In the hinterland of the Junggar Basin, there are multiple depressions with multiple sets of source rocks. Therefore, the conditions of hydrocarbon sources are complex, and the geochemical characteristics and sources ...In the hinterland of the Junggar Basin, there are multiple depressions with multiple sets of source rocks. Therefore, the conditions of hydrocarbon sources are complex, and the geochemical characteristics and sources of hydrocarbon vary in different structural belts. The evolution of the Che- Mo palaeohigh affected the formation of hydrocarbon source kitchens and hydrocarbon migration. We studied the combination and superimposition of hydrocarbon source kitchens, using as an example the hinterland of the Junggar Basin (including the Yongjin, Zhengshacun, Moxizhuang and Luliang uplift areas). The study was based on geochemical analyses of crude oil and fluid inclusions, and the histories of tectonic evolution and hydrocarbon generation. The results indicated that before the Paleogene there were two hydrocarbon-generating depressions: the Western Well Penl depression and the Changji depression on the south and north sides of the Che-Mo palaeohigh, respectively. The Permian source kitchen had been generating hydrocarbon continuously since Triassic and reached high maturity stage in the Cretaceous period. After Paleogene, the adjustment of the Che-Mo palaeohigh led to the subsidence of the Changji depression and the Jurassic source rocks reached mature stage and became the main source kitchens. However, the Jurassic source rocks in the Western Well Penl depression were still in a low maturity stage and did not generate oil because of the adjustment of tectonic movements. As a result, in the central and southern parts of the Junggar Basin, Jurassic source rocks generated oil, but in the Luliang uplift, the crude oil was from the Permian source rocks in the Western Well Penl depression and the Jurassic source rocks did not contribute. The crude oil in the central Zhengshacun-Moxizhuang belt was from the Permian source rocks in two depressions, and partially from the Jurassic source rocks. The crude oil in the Luliang uplift was from the source rocks of the lower Permian Fengcheng Formation and middle Permian Wuerhe Formation, which is characterized by superimposition of two sets of source kitchens and three accumulation stages. The crude oil in the Yongjin tectonic belt was from the lower Permian, middle Permian and Jurassic source rocks, which is characterized by superimposition of three sets of source kitchens and two accumulation stages. The crude oil in the Zhengshacun tectonic belt was from a combination of source kitchens of lower Permian and middle Permian in the Western Well Penl depression in the early stage and from the superimposition of Jurassic source rocks in the Changji depression in the late stage.展开更多
The production of lactic acid from kitchen garbage, the precursor for production of biodegradable plastics is described in detail. The influence of temperature on the lactic acid concentration, sugar concentration, an...The production of lactic acid from kitchen garbage, the precursor for production of biodegradable plastics is described in detail. The influence of temperature on the lactic acid concentration, sugar concentration, and decrement of garbage were evaluated through experiments. Fermentation were carried out in an incubator at 5, 25, 37 and 50 ℃. The latic acid produced was maximum at initial pH 6.0 and 37 ℃, i.e. 38 g/L with a yield of 0.23 g/gVS. It is concluded from the experimental results that temperature has quite a considerable effect on the production of lactic acid; lactic acid concentration increases with temperature until 37 ℃, and production rate of lactic acid drops at 50 ℃; the optimal fermentation is 37 ℃. This study shows that production of lactic acid from kitchen garbage is feasible and reduction of garbage can be realized.展开更多
The performance of the single-stage anaerobic digestion of kitchen wastes was investigated in an anaerobic sequencing batch reactor(ASBR) with gas-phased absorb of CO 2. The ASBR was operated at four chemical oxygen ...The performance of the single-stage anaerobic digestion of kitchen wastes was investigated in an anaerobic sequencing batch reactor(ASBR) with gas-phased absorb of CO 2. The ASBR was operated at four chemical oxygen demand(COD) loading rates, 2.8, 5.1, 6.2 and 8.4 g/(L·d) respectively. The COD loading rate was increased with the TS concentration and HRT changing. At maximum COD loading rate of 8.4 g/(L·d), the COD, total solid(TS) removal rate and methane gas yield were 69%, 68% and 2.5 L/(L·d) respectively. The operation of the reactor with gas-phased absorb of CO 2 was stable in spite of the low pH(2.6—3.9) and high concentration of TS(142 g/L) of input mixture. The output volatile fatty acid(VFA) concentration was between 2.7—4.7 g/L and had no inhibition on the methanogenic microorganism. The reactor without gas-phased absorb of CO 2 became acidified when the total COD loading rate was increased to 5.1 g/(L·d). Stoichiometry of the methanogenesis for kitchen wastes showed a considerable amount of alkaline will be required to keep pH in the appropriate range for the methanogenic microorganism based on theoretical calculation. Gas-phased absorb of CO 2 effectively reduced the alkaline consumption, hence avoided excessive cation into the reactor.展开更多
Continental shale strata in China are rich in petroleum resources and are an important area to strengthen domestic oil exploration and development.Based on the latest progress in geological research and exploration an...Continental shale strata in China are rich in petroleum resources and are an important area to strengthen domestic oil exploration and development.Based on the latest progress in geological research and exploration and development of petroleum inside continental source kitchens of China National Petroleum Corporation exploration areas in recent two years,we have achieved the following results:(1)The geological connotations of continental hydrocarbon accumulation inside source kitchen and"sweet spot"have been proposed.The intra-source petroleum accumulation refers to the accumulation of liquid-rich hydrocarbons retained or captured in the continental organic-rich shale strata,and"sweet spot"refers to the favorable reservoir with higher oil content,better physical properties,easier to stimulate and higher in commercial development value in the overall oil-bearing continental source rock series,they can be divided into three types,interlayer,hybrid sediment and shale.(2)High-quality shale formations in both salt water and freshwater lacustrine basins can generate hydrocarbons on a large scale,shale strata have multiple types of favorable reservoirs with large-scale storage capacity,the intra-source shale strata are overall oil-bearing and large in resource scale,and there are multiple favorable shale series for development.The exploration and development practice is propelling the formation of a series of exploration and development key technologies with"sweet spot exploration"and"volume development"as the core.Some pilot tests of these technologies have provided an important scientific basis for the economic and effective development of hydrocarbon accumulation inside source kitchen,and popularization of these technologies have achieved encouraging results preliminarily.(3)Two types of continental intra-source petroleum resources in China have great potential,including medium-high maturity with liquid-rich hydrocarbons and medium-low maturity with organic-rich matter.The Ordos,Songliao,Bohai Bay and Junggar basins are the main areas of these resources.By addressing the theoretical and technical challenges in the exploration and development,the two types of resources inside continental source kitchens will become the realistic and major strategic replacement oil resources respectively in the future.展开更多
In this paper, the methods of kitchen waste disposal in recent years were summed up, and the advantages and disadvantages of the current treatment methods were analyzed. At the same time, it has been found that the co...In this paper, the methods of kitchen waste disposal in recent years were summed up, and the advantages and disadvantages of the current treatment methods were analyzed. At the same time, it has been found that the co-processing of kitchen waste and residual sludge not only has dealt with both kitchen waste and residual sludge, but also the carbon and nitrogen ratio and moisture content of the mixture are balanced, and increases the processing efficiency significantly. It has a certain processing advantage. At present, most research is about the anaerobic digestion of kitchen waste and residual sludge, and the process is more mature, but the study of VFAs accumulation is still insufficient. Aerobic composting is still in the early stage of development, and there are few studies on it at home and abroad. Meanwhile, prospects for the kitchen waste recycling were made in this article.展开更多
This paper is part of a research project that analyses trends in housing architecture over the past 100 years. The research aims toshow how changing norms and new forms of everyday life have altered our views on housi...This paper is part of a research project that analyses trends in housing architecture over the past 100 years. The research aims toshow how changing norms and new forms of everyday life have altered our views on housing and have led to fundamental changes in housing architecture. In this paper the analysis focuses particularly on the kitchen. A hundred years ago tile kitchen of the bourgeoisie and the middleclass was only used by servants and other employees. Accordingly, the design of the kitchen was not a task for architects at all. However, during the 20th century the kitchen became an important architectural focal point. In the early part of the century architects considered it a practical workspaceto beimproved through rational analysis. Later on the kitchen was seen as a space with great social qualities, and the informal character of the kitchen was developed and exported to the rest of the dwelling. Today the kitchen has become the central space in many dwellings, but as the dwelling is increasingly being rendered representative value, modem kitchens are designed with emphasis on their aesthetic appearance. They are "life-style kitchens", which demonstrate the "good taste" of the residents and reflect their personalities.展开更多
The profile of hydrolysates during the anaerobic digestion of kitchen wastes was investigated. The experimental results show that the hysteresis of hydrolytic rate is mainly controlled by the diffusion effect. The hyd...The profile of hydrolysates during the anaerobic digestion of kitchen wastes was investigated. The experimental results show that the hysteresis of hydrolytic rate is mainly controlled by the diffusion effect. The hydrolytic mechanism of kitchen wastes is elaborated by taking the diffusion effect into consideration. A segment model of the hydrolysis for kitchen waste is formulated including the coefficient of diffusion resistance in the model. The coefficients of diffusion resistance for different particle sizes are 1.42,2.12 and 2.78 respectively based on the experimental data,in which the coefficients of diffusion resistance conform an exponential function. So,the partitioning kinetic model could be integrated as a unified experience model. The model is verified with experimental data,which shows that the model could predict the concentration of organic substances during the anaerobic digestion of kitchen wastes.展开更多
In the study on functional low-carbon ergonomic validity in buildings,ergonomic validity is different from resource validity which is easy for quantitative analysis. To eliminate the complexity and uncertainty impacts...In the study on functional low-carbon ergonomic validity in buildings,ergonomic validity is different from resource validity which is easy for quantitative analysis. To eliminate the complexity and uncertainty impacts of human factors on quantitative study,it proposes a method of building a parameter of ergonomic validity—multi-effect time by using cardiotachometer to record heart rate change,being used to evaluate the functional low-carbon ergonomic validity targeting at the ontological characteristics of kitchen. This method is used to determine the physical consumption intensity( multi-effect) through heart rate incremental relation based on the principles of physiology and ergonomics,and to confirm the ergonomic validity of environmental factors by the time to complete standard work as well as multi-effect quantitative analysis. The test results show that,under the kitchen operating conditions,the multi-effect( ME) can properly reflect the real-time status of the operator and is easily operated; the parameters obtained are not significantly related to the physiological status of the operator,and multi-effect time( MT) is sensitive to the physical consumption brought about to the operator due to kitchen environmental factors; thus,it can be taken as an objective index,which is simple and easy to operate in residential kitchen functional low-carbon evaluation.展开更多
The effect of F/M on acidification characteristics during anaerobic digestion of kitchen waste was investigated. Under different F/M,p H,alkalinity,ethyl alcohol,volatile fatty acids(VFAs),and biogas production status...The effect of F/M on acidification characteristics during anaerobic digestion of kitchen waste was investigated. Under different F/M,p H,alkalinity,ethyl alcohol,volatile fatty acids(VFAs),and biogas production status of acidification effluent in 96 h were observed. The study results showed that the content of propionic acid + acetic acid reached 56%-80% when F/M≤1. 0,which was mainly known as propionic acid type of fermentation and was accompanied by methane. The value of alkalinity was only 3 000-4 000 mg/L,which indicated that the stability was weak in the system. When 1. 0 < F/M≤2. 5,the concentration of butyric acid + acetic acid was in the range of 77%-85%,and acid production rate per unit load was more than 250 mg VFAs/g VS,which was known as butyric acid type of fermentation. The fermentation type was stable and could provide more available VFAs for subsequent methanation processes because the value of alkalinity reached 5 650 mg/L. When F/M≥2. 5,the content of ethanol + acetic acid was 80%-92%,which was known as ethanol type of fermentation. And p H of 96 h was only 5. 0( F/M = 3. 0) and 4. 3(F/M =4.0),and acidification was serious and the stability was weak in the system,which would hinder the subsequent methanation process.Therefore,F/M influenced fermentation type,and it can provide a target product for subsequent methanation process by controlling F/M in a reasonable range.展开更多
A commercial kitchen is a complicated environment where multiple components of a ventilation system including hood exhaust, conditioned air supply, and makeup air systems work together but not always in unison. And th...A commercial kitchen is a complicated environment where multiple components of a ventilation system including hood exhaust, conditioned air supply, and makeup air systems work together but not always in unison. And the application of an appropriate ventilation system is extremely vital to keep the catering kitchen comfortable, which consequently promotes the productivity and gains. Application of two systems (traditional mixing ventilation system and thermal displacement ventilation system) is compared in a typical kitchen environment using computational fluid dynamics modeling which was used to investigate the difference between mixing and displacement ventilation (DV). It was reported in two parts, one on thermal comfort and the other one on indoor air quality. The results show that DV can maintain a thermally comfortable environment that has a low air velocity, a small temperature difference between the head and ankle level, and a low percentage of dissatisfied people, and may provide better IAQ in the occupied zone. So it was persuasive that using thermal displacement ventilation in kitchen environment allows for a reduction in space temperature without increasing the air-conditioning system capacity.展开更多
A commercial kitchen is a complicated environment where multiple components of a ventilation system including hood exhaust, conditioned air supply, and makeup air systems work together but not always in unison. And th...A commercial kitchen is a complicated environment where multiple components of a ventilation system including hood exhaust, conditioned air supply, and makeup air systems work together but not always in unison. And the application of an appropriate ventilation system is extremely vital to keep the catering kitchen comfortable, which consequently promotes the productivity and gains. Application of two systems (traditional mixing ventilation system and thermal displacement ventilation system) is compared in a typical kitchen environment using computational fluid dynamics modeling which was used to investigate the difference between mixing and displacement ventilation (DV). It was reported in two parts, one on thermal comfort and the other one on indoor air quality. The results show that DV can maintain a thermally comfortable environment that has a low air velocity, a small temperature difference between the head and ankle level, and a low percentage of dissatisfied people, and may provide better IAQ in the occupied zone. So it was persuasive that using thermal displacement ventilation in kitchen environment allows for a reduction in space temperature without increasing the air-conditioning system capacity.展开更多
Because of the differences of hydrocarbon accumulation between in-source and out-of-source oil pools, the demand for source kitchen is different. Based on the establishment of source-to-reservoir correlation in the kn...Because of the differences of hydrocarbon accumulation between in-source and out-of-source oil pools, the demand for source kitchen is different. Based on the establishment of source-to-reservoir correlation in the known conventional accumulations, and the characteristics of shale oil source kitchens as well, this paper discusses the differences of source kitchens for the formation of both conventional and shale oils. The formation of conventional oil pools is a process of hydrocarbons enriching from disperse state under the action of buoyancy, which enables most of the oil pools to be formed outside the source kitchens. The source rock does not necessarily have high abundance of organic matter, but has to have high efficiency and enough amount of hydrocarbon expulsion. The TOC threshold of source rocks for conventional oil accumulations is 0.5%, with the best TOC window ranging from 1% to 3%. The oil pools formed inside the source kitchens, mainly shale oil, are the retention of oil and gas in the source rock and there is no large-scale hydrocarbon migration and enrichment process happened, which requires better quality and bigger scale of source rocks. The threshold of TOC for medium to high maturity of shale oil is 2%, with the best range falling in 3%–5%. Medium to low mature shale oil resource has a TOC threshold of 6%, and the higher the better in particular. The most favorable kerogen for both high and low-mature shale oils is oil-prone type of I–II1. Carrying out source rock quality and classification evaluation and looking for large-scale and high-quality source rock enrichment areas are a scientific issue that must be paid attention to when exploration activity changes from out-of-source regions to in-source kitchen areas. The purpose is to provide theoretical guidance for the upcoming shale oil enrichment area selection, economic discovery and objective evaluation of resource potential.展开更多
In order to clarify the influence of microbial agents on kitchen waste and rice straw composting, an aerobic composting experiment was conducted by setting three kinds of combined bacterial agents to study the tempera...In order to clarify the influence of microbial agents on kitchen waste and rice straw composting, an aerobic composting experiment was conducted by setting three kinds of combined bacterial agents to study the temperature change in the composting, and pH value, nutrient contents, C/N and heavy metal content after composting through. The three kinds of combined bacterial agents were as follows:B1 with effective strains: Bacillus subtilis, yeast and Trichoderma sp.;B2 with effective strains: Bacillus amyloliquefaciens, yeast and lactic acid bacteria;B3 with effective strains: Bacillus subtilis, yeast and lactic acid bacteria. Results showed that the addition of microbial agents had signifcant effects on temperature change,nitrogen and phosphorus content and C/N of the compost. T1, T2, and T3 treatments lasted for 8, 5 and 4 d in the thermophilic phase above 60℃, respectively. The total nitrogen content of each treatment was 14.90, 15.50 and 13.80 g/kg respectively after composting. The total phosphorus content of each treatment was 4.87, 4.17 and 3.70g/kg respectively at the end of composting. The C/N of each treatment was 20.94,22.63, and 22.65 respectively at the end of composting. The application effect of B1bacteria agent on the composting of kitchen waste and rice straw was better.展开更多
基金This study was supported by the Fundamental Research Funds for Zhejiang Provincial Universities and Research Institutes(No.2021J004)the Scientific Research Fund of Zhejiang Provincial Education Department(No.Y202044721).
文摘In this study,a novel absorpent(MSAR600℃)with a hydrophobic surface and hierarchical porous structure for the removal of kitchen oil was facilely fabricated from the macroalgae,laver(Porphyra haitanensis)by incorpor-ating high-temperature carbonization and alkyl polyglucosides(APG)and rhamnolipid(RL)surfactants modifi-cation.The characterization results showed MSAR600℃ possessed a louts-leaf-like papillae microstructure with high contact angle(137.5°),abundant porous structure with high specific surface area(23.4 m^(2)/g),and various oxygen-containing functional groups(-OH,C=O,C-O).Batch adsorption experiments were conducted to inves-tigate the effect of adsorption time,temperature,pH,and absorbent dose on kitchen oil adsorption performance.Then the practical application for the removal of kitchen oil using MSAR600℃ was also performed.The results showed that MSAR600℃ had a higher removal efficiency for kitchen oil(75.98%),compared with the commercial detergent(72.3%).This study demonstrates an example of fabricating a green tableware detergent for enhanced removal performance of kitchen oil.
基金USST International Professional Certification and All-English Course Construction,USST Postgraduate Teaching Construction Project.
文摘Studying the covers of the three editions of The Kitchen God’s Wife by Amy Tan,a famous female Chinese American writer,the author finds Chinese cultural elements stood out in publishers’earliest recommendations,but later were replaced by immigrant mother-daughter relationship,and then were overwhelmed by the concern for human beings.It is interesting that this change fits the changing focuses of Chinese American writers in the 21st century.
文摘To evaluate the influence of lactic acid on the methanogenesis, anaerobic digestion of kitchen wastes was firstly conducted in a two-phase anaerobic digestion process, and performance of two digesters fed with lactic acid and glucose was subsequently compared. The results showed that the lactic acid was the main fermentation products of hydrolysis-acidification stage in the two-phase anaerobic digestion process for kitchen wastes. The lactic acid concentration constituted approximately 50% of the chemical oxygen demand (COD) concentration in the hydrolysis-acidification liquid. The maximum organic loading rate was lower in the digester fed with lactic acid than that fed with glucose. Volatile fatty acids (VFAs) and COD removal were deteriorated in the methanogenic reactor fed with lactic acid compared to that fed with glucose. The specific methanogenic activity (SMA) declined to 0.343 g COD/(gVSS-d) when the COD loading were designated as 18.8 g/(L-d) in the digester fed with lactic acid. The propionic acid accumulation occurred due to the high concentration of lactic acid fed. It could be concluded that avoiding the presence of the lactic acid is necessary in the hydrolysis-acidification process for the improvement of the two-phase anaerobic digestion process of kitchen wastes.
基金Supported by Hunan Science and Technology Office(06wk3023)National High Technology Research and Development Program of China(2006AA05Z229)Project-sponsored by SRFfor ROCS,SEM
文摘A new kind of thermoelectric heat pump water heater for kitchens exhaust heat recovery was presented,and its performances were investigated under different operating voltages.The experiment results show that the coefficient of performance decreases and the temperature difference between the hot and cold sides becomes larger with the increase of the operating voltage,but the heating time becomes short.The higher the temperature of water,the greater the temperature difference between the hot and cold sides,leading to a smaller coefficient of performance.Under an exhaust temperature of 36 ℃,the coefficient of performance decreases from 1.66 to 1.22 when the temperature of water increases from 28 ℃ to 46 ℃ with operating voltage 16 V.Performance tests illustrate that,compared with the conventional electrical water heaters,the new kind of thermoelectric heat pump water heater is more coefficient.
基金Financial support provided by the National Basic Research Program of China(973 Project)(Grant No.2012CB719806)
文摘Engineering properties of municipal solid waste (MSW) depend largely on the waste's initial compositionand degree of degradation. MSWs in developing countries usually have a high kitchen waste content(called HKWC MSW). After comparing and analyzing the laboratory and field test results of physicalcomposition, hydraulic properties, gas generation and gas permeability, and mechanical properties forHKWC MSW and low kitchen waste content MSW (called LKWC MSW), the following findings wereobtained: (1) HKWC MSW has a higher initial water content (IWC) than LKWC MSW, but the field capacitiesof decomposed HKWC and LKWC MSWs are similar; (2) the hydraulic conductivity and gaspermeability for HKWC MSW are both an order of magnitude smaller than those for LKWC MSW; (3)compared with LKWC MSW, HKWC MSW has a higher landfill gas (LFG) generation rate but a shorterduration and a lower potential capacity; (4) the primary compression feature for decomposed HKWCMSW is similar to that of decomposed LKWC MSW, but the compression induced by degradation ofHKWC MSW is greater than that of LKWC MSW; and (5) the shear strength of HKWC MSW changessignificantly with time and strain. Based on the differences of engineering properties between these twokinds of MSWs, the geo-environmental issues in HKWC MSW landfills were analyzed, including highleachate production, high leachate mounds, low LFG collection efficiency, large settlement and slopestability problem, and corresponding advice for the management and design of HKWC MSW landfills wasrecommended.
基金supported by the Basic Research Development Program of China "Accumulation mechanisms and distribution patterns of hydrocarbon intypical superimposed basins of west China" (973 Program,No.2006CB202303)
文摘The Lukeqin structural belt is the main heavy oil accumulation zone in the Turpan-Hami Basin. The recent discovery of light oil in the Triassic indicates that there may be multiple source kitchens contributing to the oil accumulation. According to oil geochemical analysis and oil-source correlation, the oil in deep and shallow reservoirs of the Lukeqin Oilfield presents different physical and saturated hydrocarbon mass spectrum characteristics. The Triassic heavy oil is from the northern Upper Permian lacustrine source rocks, and the light oil represented by the Yudong-9 Well is from the northwestern Lower Jurassic coal-measure source rocks. The timing of oil charging was determined by K/Ar isotope dating, reservoir fluid inclusion analysis and the evolution history of different source rocks. In summary, the accumulation process consists of two stages. From the end of Triassic to early Jurassic, the northern Permian source kitchen generated a considerable amount of oil, which was finally degraded to heavy oil, migrated to the south and then accumulated. The northwestern Jurassic coal-measure source kitchen began to generate oil at the end of Cretaceous, while the northern source kitchen could only generate a little hydrocarbon. The heavy oil and the light oil have different source rock locations, migration directions and accumulation times. The migration of hydrocarbon source kitchens affects the distribution of heavy oil and light oil reservoirs at the present time.
基金supported by the National Basic Research Program in China (2006CB202300)
文摘In the hinterland of the Junggar Basin, there are multiple depressions with multiple sets of source rocks. Therefore, the conditions of hydrocarbon sources are complex, and the geochemical characteristics and sources of hydrocarbon vary in different structural belts. The evolution of the Che- Mo palaeohigh affected the formation of hydrocarbon source kitchens and hydrocarbon migration. We studied the combination and superimposition of hydrocarbon source kitchens, using as an example the hinterland of the Junggar Basin (including the Yongjin, Zhengshacun, Moxizhuang and Luliang uplift areas). The study was based on geochemical analyses of crude oil and fluid inclusions, and the histories of tectonic evolution and hydrocarbon generation. The results indicated that before the Paleogene there were two hydrocarbon-generating depressions: the Western Well Penl depression and the Changji depression on the south and north sides of the Che-Mo palaeohigh, respectively. The Permian source kitchen had been generating hydrocarbon continuously since Triassic and reached high maturity stage in the Cretaceous period. After Paleogene, the adjustment of the Che-Mo palaeohigh led to the subsidence of the Changji depression and the Jurassic source rocks reached mature stage and became the main source kitchens. However, the Jurassic source rocks in the Western Well Penl depression were still in a low maturity stage and did not generate oil because of the adjustment of tectonic movements. As a result, in the central and southern parts of the Junggar Basin, Jurassic source rocks generated oil, but in the Luliang uplift, the crude oil was from the Permian source rocks in the Western Well Penl depression and the Jurassic source rocks did not contribute. The crude oil in the central Zhengshacun-Moxizhuang belt was from the Permian source rocks in two depressions, and partially from the Jurassic source rocks. The crude oil in the Luliang uplift was from the source rocks of the lower Permian Fengcheng Formation and middle Permian Wuerhe Formation, which is characterized by superimposition of two sets of source kitchens and three accumulation stages. The crude oil in the Yongjin tectonic belt was from the lower Permian, middle Permian and Jurassic source rocks, which is characterized by superimposition of three sets of source kitchens and two accumulation stages. The crude oil in the Zhengshacun tectonic belt was from a combination of source kitchens of lower Permian and middle Permian in the Western Well Penl depression in the early stage and from the superimposition of Jurassic source rocks in the Changji depression in the late stage.
文摘The production of lactic acid from kitchen garbage, the precursor for production of biodegradable plastics is described in detail. The influence of temperature on the lactic acid concentration, sugar concentration, and decrement of garbage were evaluated through experiments. Fermentation were carried out in an incubator at 5, 25, 37 and 50 ℃. The latic acid produced was maximum at initial pH 6.0 and 37 ℃, i.e. 38 g/L with a yield of 0.23 g/gVS. It is concluded from the experimental results that temperature has quite a considerable effect on the production of lactic acid; lactic acid concentration increases with temperature until 37 ℃, and production rate of lactic acid drops at 50 ℃; the optimal fermentation is 37 ℃. This study shows that production of lactic acid from kitchen garbage is feasible and reduction of garbage can be realized.
文摘The performance of the single-stage anaerobic digestion of kitchen wastes was investigated in an anaerobic sequencing batch reactor(ASBR) with gas-phased absorb of CO 2. The ASBR was operated at four chemical oxygen demand(COD) loading rates, 2.8, 5.1, 6.2 and 8.4 g/(L·d) respectively. The COD loading rate was increased with the TS concentration and HRT changing. At maximum COD loading rate of 8.4 g/(L·d), the COD, total solid(TS) removal rate and methane gas yield were 69%, 68% and 2.5 L/(L·d) respectively. The operation of the reactor with gas-phased absorb of CO 2 was stable in spite of the low pH(2.6—3.9) and high concentration of TS(142 g/L) of input mixture. The output volatile fatty acid(VFA) concentration was between 2.7—4.7 g/L and had no inhibition on the methanogenic microorganism. The reactor without gas-phased absorb of CO 2 became acidified when the total COD loading rate was increased to 5.1 g/(L·d). Stoichiometry of the methanogenesis for kitchen wastes showed a considerable amount of alkaline will be required to keep pH in the appropriate range for the methanogenic microorganism based on theoretical calculation. Gas-phased absorb of CO 2 effectively reduced the alkaline consumption, hence avoided excessive cation into the reactor.
基金Supported by the National Key Basic Research and Development Program(973 Program),China(2014CB239000)China National Science and Technology Major Project(2016ZX05046)
文摘Continental shale strata in China are rich in petroleum resources and are an important area to strengthen domestic oil exploration and development.Based on the latest progress in geological research and exploration and development of petroleum inside continental source kitchens of China National Petroleum Corporation exploration areas in recent two years,we have achieved the following results:(1)The geological connotations of continental hydrocarbon accumulation inside source kitchen and"sweet spot"have been proposed.The intra-source petroleum accumulation refers to the accumulation of liquid-rich hydrocarbons retained or captured in the continental organic-rich shale strata,and"sweet spot"refers to the favorable reservoir with higher oil content,better physical properties,easier to stimulate and higher in commercial development value in the overall oil-bearing continental source rock series,they can be divided into three types,interlayer,hybrid sediment and shale.(2)High-quality shale formations in both salt water and freshwater lacustrine basins can generate hydrocarbons on a large scale,shale strata have multiple types of favorable reservoirs with large-scale storage capacity,the intra-source shale strata are overall oil-bearing and large in resource scale,and there are multiple favorable shale series for development.The exploration and development practice is propelling the formation of a series of exploration and development key technologies with"sweet spot exploration"and"volume development"as the core.Some pilot tests of these technologies have provided an important scientific basis for the economic and effective development of hydrocarbon accumulation inside source kitchen,and popularization of these technologies have achieved encouraging results preliminarily.(3)Two types of continental intra-source petroleum resources in China have great potential,including medium-high maturity with liquid-rich hydrocarbons and medium-low maturity with organic-rich matter.The Ordos,Songliao,Bohai Bay and Junggar basins are the main areas of these resources.By addressing the theoretical and technical challenges in the exploration and development,the two types of resources inside continental source kitchens will become the realistic and major strategic replacement oil resources respectively in the future.
基金Supported by Science and Technology Plan Project of Zhoushan City(2014C11006,2016C41006)Zhejiang Public Welfare Technology Application Research Project(2016C33054)
文摘In this paper, the methods of kitchen waste disposal in recent years were summed up, and the advantages and disadvantages of the current treatment methods were analyzed. At the same time, it has been found that the co-processing of kitchen waste and residual sludge not only has dealt with both kitchen waste and residual sludge, but also the carbon and nitrogen ratio and moisture content of the mixture are balanced, and increases the processing efficiency significantly. It has a certain processing advantage. At present, most research is about the anaerobic digestion of kitchen waste and residual sludge, and the process is more mature, but the study of VFAs accumulation is still insufficient. Aerobic composting is still in the early stage of development, and there are few studies on it at home and abroad. Meanwhile, prospects for the kitchen waste recycling were made in this article.
文摘This paper is part of a research project that analyses trends in housing architecture over the past 100 years. The research aims toshow how changing norms and new forms of everyday life have altered our views on housing and have led to fundamental changes in housing architecture. In this paper the analysis focuses particularly on the kitchen. A hundred years ago tile kitchen of the bourgeoisie and the middleclass was only used by servants and other employees. Accordingly, the design of the kitchen was not a task for architects at all. However, during the 20th century the kitchen became an important architectural focal point. In the early part of the century architects considered it a practical workspaceto beimproved through rational analysis. Later on the kitchen was seen as a space with great social qualities, and the informal character of the kitchen was developed and exported to the rest of the dwelling. Today the kitchen has become the central space in many dwellings, but as the dwelling is increasingly being rendered representative value, modem kitchens are designed with emphasis on their aesthetic appearance. They are "life-style kitchens", which demonstrate the "good taste" of the residents and reflect their personalities.
文摘The profile of hydrolysates during the anaerobic digestion of kitchen wastes was investigated. The experimental results show that the hysteresis of hydrolytic rate is mainly controlled by the diffusion effect. The hydrolytic mechanism of kitchen wastes is elaborated by taking the diffusion effect into consideration. A segment model of the hydrolysis for kitchen waste is formulated including the coefficient of diffusion resistance in the model. The coefficients of diffusion resistance for different particle sizes are 1.42,2.12 and 2.78 respectively based on the experimental data,in which the coefficients of diffusion resistance conform an exponential function. So,the partitioning kinetic model could be integrated as a unified experience model. The model is verified with experimental data,which shows that the model could predict the concentration of organic substances during the anaerobic digestion of kitchen wastes.
基金Sponsored by the "Twelfth Five-year" National Science and Technology Supoort Programe(Grant No.2011BAJ05B02-03)
文摘In the study on functional low-carbon ergonomic validity in buildings,ergonomic validity is different from resource validity which is easy for quantitative analysis. To eliminate the complexity and uncertainty impacts of human factors on quantitative study,it proposes a method of building a parameter of ergonomic validity—multi-effect time by using cardiotachometer to record heart rate change,being used to evaluate the functional low-carbon ergonomic validity targeting at the ontological characteristics of kitchen. This method is used to determine the physical consumption intensity( multi-effect) through heart rate incremental relation based on the principles of physiology and ergonomics,and to confirm the ergonomic validity of environmental factors by the time to complete standard work as well as multi-effect quantitative analysis. The test results show that,under the kitchen operating conditions,the multi-effect( ME) can properly reflect the real-time status of the operator and is easily operated; the parameters obtained are not significantly related to the physiological status of the operator,and multi-effect time( MT) is sensitive to the physical consumption brought about to the operator due to kitchen environmental factors; thus,it can be taken as an objective index,which is simple and easy to operate in residential kitchen functional low-carbon evaluation.
基金Supported by National Science and Technology Support Program(2015BAD21B03,2014BAC24B01)
文摘The effect of F/M on acidification characteristics during anaerobic digestion of kitchen waste was investigated. Under different F/M,p H,alkalinity,ethyl alcohol,volatile fatty acids(VFAs),and biogas production status of acidification effluent in 96 h were observed. The study results showed that the content of propionic acid + acetic acid reached 56%-80% when F/M≤1. 0,which was mainly known as propionic acid type of fermentation and was accompanied by methane. The value of alkalinity was only 3 000-4 000 mg/L,which indicated that the stability was weak in the system. When 1. 0 < F/M≤2. 5,the concentration of butyric acid + acetic acid was in the range of 77%-85%,and acid production rate per unit load was more than 250 mg VFAs/g VS,which was known as butyric acid type of fermentation. The fermentation type was stable and could provide more available VFAs for subsequent methanation processes because the value of alkalinity reached 5 650 mg/L. When F/M≥2. 5,the content of ethanol + acetic acid was 80%-92%,which was known as ethanol type of fermentation. And p H of 96 h was only 5. 0( F/M = 3. 0) and 4. 3(F/M =4.0),and acidification was serious and the stability was weak in the system,which would hinder the subsequent methanation process.Therefore,F/M influenced fermentation type,and it can provide a target product for subsequent methanation process by controlling F/M in a reasonable range.
文摘A commercial kitchen is a complicated environment where multiple components of a ventilation system including hood exhaust, conditioned air supply, and makeup air systems work together but not always in unison. And the application of an appropriate ventilation system is extremely vital to keep the catering kitchen comfortable, which consequently promotes the productivity and gains. Application of two systems (traditional mixing ventilation system and thermal displacement ventilation system) is compared in a typical kitchen environment using computational fluid dynamics modeling which was used to investigate the difference between mixing and displacement ventilation (DV). It was reported in two parts, one on thermal comfort and the other one on indoor air quality. The results show that DV can maintain a thermally comfortable environment that has a low air velocity, a small temperature difference between the head and ankle level, and a low percentage of dissatisfied people, and may provide better IAQ in the occupied zone. So it was persuasive that using thermal displacement ventilation in kitchen environment allows for a reduction in space temperature without increasing the air-conditioning system capacity.
文摘A commercial kitchen is a complicated environment where multiple components of a ventilation system including hood exhaust, conditioned air supply, and makeup air systems work together but not always in unison. And the application of an appropriate ventilation system is extremely vital to keep the catering kitchen comfortable, which consequently promotes the productivity and gains. Application of two systems (traditional mixing ventilation system and thermal displacement ventilation system) is compared in a typical kitchen environment using computational fluid dynamics modeling which was used to investigate the difference between mixing and displacement ventilation (DV). It was reported in two parts, one on thermal comfort and the other one on indoor air quality. The results show that DV can maintain a thermally comfortable environment that has a low air velocity, a small temperature difference between the head and ankle level, and a low percentage of dissatisfied people, and may provide better IAQ in the occupied zone. So it was persuasive that using thermal displacement ventilation in kitchen environment allows for a reduction in space temperature without increasing the air-conditioning system capacity.
基金Supported by the China National Science and Technology Major Project(2016ZX05046,2017ZX05001)RIPED Scientific Research and Technology Development Project(2018ycq02)。
文摘Because of the differences of hydrocarbon accumulation between in-source and out-of-source oil pools, the demand for source kitchen is different. Based on the establishment of source-to-reservoir correlation in the known conventional accumulations, and the characteristics of shale oil source kitchens as well, this paper discusses the differences of source kitchens for the formation of both conventional and shale oils. The formation of conventional oil pools is a process of hydrocarbons enriching from disperse state under the action of buoyancy, which enables most of the oil pools to be formed outside the source kitchens. The source rock does not necessarily have high abundance of organic matter, but has to have high efficiency and enough amount of hydrocarbon expulsion. The TOC threshold of source rocks for conventional oil accumulations is 0.5%, with the best TOC window ranging from 1% to 3%. The oil pools formed inside the source kitchens, mainly shale oil, are the retention of oil and gas in the source rock and there is no large-scale hydrocarbon migration and enrichment process happened, which requires better quality and bigger scale of source rocks. The threshold of TOC for medium to high maturity of shale oil is 2%, with the best range falling in 3%–5%. Medium to low mature shale oil resource has a TOC threshold of 6%, and the higher the better in particular. The most favorable kerogen for both high and low-mature shale oils is oil-prone type of I–II1. Carrying out source rock quality and classification evaluation and looking for large-scale and high-quality source rock enrichment areas are a scientific issue that must be paid attention to when exploration activity changes from out-of-source regions to in-source kitchen areas. The purpose is to provide theoretical guidance for the upcoming shale oil enrichment area selection, economic discovery and objective evaluation of resource potential.
文摘In order to clarify the influence of microbial agents on kitchen waste and rice straw composting, an aerobic composting experiment was conducted by setting three kinds of combined bacterial agents to study the temperature change in the composting, and pH value, nutrient contents, C/N and heavy metal content after composting through. The three kinds of combined bacterial agents were as follows:B1 with effective strains: Bacillus subtilis, yeast and Trichoderma sp.;B2 with effective strains: Bacillus amyloliquefaciens, yeast and lactic acid bacteria;B3 with effective strains: Bacillus subtilis, yeast and lactic acid bacteria. Results showed that the addition of microbial agents had signifcant effects on temperature change,nitrogen and phosphorus content and C/N of the compost. T1, T2, and T3 treatments lasted for 8, 5 and 4 d in the thermophilic phase above 60℃, respectively. The total nitrogen content of each treatment was 14.90, 15.50 and 13.80 g/kg respectively after composting. The total phosphorus content of each treatment was 4.87, 4.17 and 3.70g/kg respectively at the end of composting. The C/N of each treatment was 20.94,22.63, and 22.65 respectively at the end of composting. The application effect of B1bacteria agent on the composting of kitchen waste and rice straw was better.