期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
包含r-invex函数的连续时间最优化问题
1
作者 段誉 《昆明大学学报》 2007年第4期1-5,共5页
Antczak提出了一类非凸的可微函数并将其称为r-invex函数,它是invex函数的一种推广。论文定义了一类KKT-r-invex函数,讨论了该类函数的一些性质,并将其应用到连续时间非线性最优化问题(CNP)中,从而获得了Karush-Kuhn-Tucker点是全局最... Antczak提出了一类非凸的可微函数并将其称为r-invex函数,它是invex函数的一种推广。论文定义了一类KKT-r-invex函数,讨论了该类函数的一些性质,并将其应用到连续时间非线性最优化问题(CNP)中,从而获得了Karush-Kuhn-Tucker点是全局最优解的一个充分必要条件。论文的主要结果推广了已有的相应结果。 展开更多
关键词 非线性规划 r—invex函数 kkt-条件 KKT—r—invexity 全局最优解
下载PDF
Efficient seismic data reconstruction based on Geman function minimization 被引量:2
2
作者 Li Yan-Yan Fu Li-Hua +2 位作者 Cheng Wen-Ting Niu Xiao Zhang Wan-Juan 《Applied Geophysics》 SCIE CSCD 2022年第2期185-196,307,共13页
Seismic data typically contain random missing traces because of obstacles and economic restrictions,influencing subsequent processing and interpretation.Seismic data recovery can be expressed as a low-rank matrix appr... Seismic data typically contain random missing traces because of obstacles and economic restrictions,influencing subsequent processing and interpretation.Seismic data recovery can be expressed as a low-rank matrix approximation problem by assuming a low-rank structure for the complete seismic data in the frequency–space(f–x)domain.The nuclear norm minimization(NNM)(sum of singular values)approach treats singular values equally,yielding a solution deviating from the optimal.Further,the log-sum majorization–minimization(LSMM)approach uses the nonconvex log-sum function as a rank substitution for seismic data interpolation,which is highly accurate but time-consuming.Therefore,this study proposes an efficient nonconvex reconstruction model based on the nonconvex Geman function(the nonconvex Geman low-rank(NCGL)model),involving a tighter approximation of the original rank function.Without introducing additional parameters,the nonconvex problem is solved using the Karush–Kuhn–Tucker condition theory.Experiments using synthetic and field data demonstrate that the proposed NCGL approach achieves a higher signal-to-noise ratio than the singular value thresholding method based on NNM and the projection onto convex sets method based on the data-driven threshold model.The proposed approach achieves higher reconstruction efficiency than the singular value thresholding and LSMM methods. 展开更多
关键词 Seismic data reconstruction low rank Geman function NONCONVEX Karush–Kuhn–Tucker condition
下载PDF
Optimality Conditions for Double-sparsity Constrained Optimization
3
作者 WANG Dongrui XIU Naihua ZHOU Shenglong 《数学进展》 CSCD 北大核心 2024年第6期1145-1157,共13页
Sparse optimization has witnessed advancements in recent decades,and the step function finds extensive applications across various machine learning and signal processing domains.This paper integrates zero norm and the... Sparse optimization has witnessed advancements in recent decades,and the step function finds extensive applications across various machine learning and signal processing domains.This paper integrates zero norm and the step function to formulate a doublesparsity constrained optimization problem,wherein a linear equality constraint is also taken into consideration.By defining aτ-Lagrangian stationary point and a KKT point,we establish the first-order and second-order necessary and sufficient optimality conditions for the problem.Furthermore,we thoroughly elucidate their relationships to local and global optimal solutions.Finally,special cases and examples are presented to illustrate the obtained theorems. 展开更多
关键词 double-sparsity constrained optimization Lagrangian stationary point KKT point optimality condition
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部