Gold(Au)and palladium(Pd)play an increasing role in the production and human life;Therefore,it is of great significance to study their recovery.A 5,11,17,23-tetra-ethylthio-25,26,27,28-tetra-hydroxyl thiacalix[4]arene...Gold(Au)and palladium(Pd)play an increasing role in the production and human life;Therefore,it is of great significance to study their recovery.A 5,11,17,23-tetra-ethylthio-25,26,27,28-tetra-hydroxyl thiacalix[4]arene(TCAET)was synthesized specifically for the capture of Au(Ⅲ)and Pd(Ⅱ)from HCl medium by liquid-liquid extraction.In a 0.1 mol·L^(-1)HCl medium,the transfer of Au(Ⅲ)and Pd(Ⅱ)from the aqueous phase to the organic phase was highly efficient,with a transfer ratio of 100%for Au(Ⅲ)and 98%for Pd(Ⅱ).Furthermore,the extraction equilibrium time for Au(Ⅲ)was just 5 min.Job's method data demonstrated that TCAET formed complexes with Au(Ⅲ)and Pd(Ⅱ)in a ratio of 2:3 and 1:1,respectively,during the extraction process.TCAET showed high selectivity toward Pd(Ⅱ)and Au(Ⅲ)over other competing metal ions.Moreover,both Au(Ⅲ)and Pd(Ⅱ)could be successfully stripped from the loaded organic phases with a 1.0 mol·L^(-1)thiourea in 0.5 mol·L^(-1)HCl and 0.5 mol·L^(-1)thiourea in 0.5 mol·L^(-1)HCl,respectively.Results obtained from five consecutive extraction-stripping cycles showed good reusability of TCAET toward Au(Ⅲ)and Pd(Ⅱ)recovery.The conclusion can provide a certain reference for thiacalixarene in the recovery of precious metal species.展开更多
The properties of poly(3-hexylthiophene):(6,6)-phenyl C61 butyric acid methyl ester (P3HT:PCBM) organic pho- tovoltaic devices (OPVs) with an indium tin oxide (ITO) anode treated by a KMnO4 solution are in...The properties of poly(3-hexylthiophene):(6,6)-phenyl C61 butyric acid methyl ester (P3HT:PCBM) organic pho- tovoltaic devices (OPVs) with an indium tin oxide (ITO) anode treated by a KMnO4 solution are investigated. The optimized KMnO4 solution has a concentration of 50 rag/L, and ITO is treated for 15 min. The modification of ITO anode results in an enhancement of the power conversion efficiency (PCE) of the device, which is responsible for the increase of the photocurrent. The performance enhancement is attributed to the work function modification of the ITO substrate through the strong oxygenation of KMnO4, and then the charge collection efficiency is improved.展开更多
Al-7.5Si-4Cu cast alloy melt modified by Al-5Ti-B, RE and Al-10Sr master alloys were poured in the chromite sand moulds, to investigate comparatively the effects of individual or combined additions of grain refiners a...Al-7.5Si-4Cu cast alloy melt modified by Al-5Ti-B, RE and Al-10Sr master alloys were poured in the chromite sand moulds, to investigate comparatively the effects of individual or combined additions of grain refiners and modifiers on the mechanical properties, microstructures, grain refining and modification, and intermetallic compounds of the alloy. The results show that the mechanical properties and the microstructures of Al-7.5Si-4Cu cast alloys are improved immensely by combining addition of 0.8%Al-5Ti-B, 0.1%RE and 0.1%Al-10Sr grain refiners and modifiers compared with the individual addition and cast conditions. For individual addition condition, addition of 0.8%Al-5Ti-B master alloy can obtain superior tensile strength, Brinell hardness and finer equiaxedα(Al) dendrites. The alloy with 0.1%RE master alloy shows the highest improvement in ductility because the rare earth can purify the molten metal and change the shape of intermetallic compounds. While the alloy with 0.1%Al-10Sr modifier shows only good improvement in yield strength, and the improvement of other performance is unsatisfactory. The Al-10Sr modifier has a significant metamorphism for the eutectic silicon, but will make the gas content in the aluminum alloy melt increase to form serious columnar grain structures. The effects of grain refining and modification on mean area and aspect ratio have the same conclusions obtained in the mechanical properties and the microstructures analyses.展开更多
基金supported by the National Natural Science Foundation of China(U20A20268)Natural Science Foundation of Hunan Province(2020JJ1004)Hunan Provincial Innovation Foundation for Postgraduate(CX20211190)。
文摘Gold(Au)and palladium(Pd)play an increasing role in the production and human life;Therefore,it is of great significance to study their recovery.A 5,11,17,23-tetra-ethylthio-25,26,27,28-tetra-hydroxyl thiacalix[4]arene(TCAET)was synthesized specifically for the capture of Au(Ⅲ)and Pd(Ⅱ)from HCl medium by liquid-liquid extraction.In a 0.1 mol·L^(-1)HCl medium,the transfer of Au(Ⅲ)and Pd(Ⅱ)from the aqueous phase to the organic phase was highly efficient,with a transfer ratio of 100%for Au(Ⅲ)and 98%for Pd(Ⅱ).Furthermore,the extraction equilibrium time for Au(Ⅲ)was just 5 min.Job's method data demonstrated that TCAET formed complexes with Au(Ⅲ)and Pd(Ⅱ)in a ratio of 2:3 and 1:1,respectively,during the extraction process.TCAET showed high selectivity toward Pd(Ⅱ)and Au(Ⅲ)over other competing metal ions.Moreover,both Au(Ⅲ)and Pd(Ⅱ)could be successfully stripped from the loaded organic phases with a 1.0 mol·L^(-1)thiourea in 0.5 mol·L^(-1)HCl and 0.5 mol·L^(-1)thiourea in 0.5 mol·L^(-1)HCl,respectively.Results obtained from five consecutive extraction-stripping cycles showed good reusability of TCAET toward Au(Ⅲ)and Pd(Ⅱ)recovery.The conclusion can provide a certain reference for thiacalixarene in the recovery of precious metal species.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.10974013 and 60978060)the Research Fund for the Doctoral Program of Higher Education,China(Grant No.20090009110027)+3 种基金the Beijing Municipal Natural Science Foundation,China(Grant No.1102028)the New Century Excellent Talents in University,China(Grant No.NCET-10-0220)the Fundamental Research Funds for the Central Universities,China(Grant No.2012JBZ001)the Technology Innovation Fund for Outstanding Ph.D.Students of Beijing Jiaotong University,China(Grant No.48034)
文摘The properties of poly(3-hexylthiophene):(6,6)-phenyl C61 butyric acid methyl ester (P3HT:PCBM) organic pho- tovoltaic devices (OPVs) with an indium tin oxide (ITO) anode treated by a KMnO4 solution are investigated. The optimized KMnO4 solution has a concentration of 50 rag/L, and ITO is treated for 15 min. The modification of ITO anode results in an enhancement of the power conversion efficiency (PCE) of the device, which is responsible for the increase of the photocurrent. The performance enhancement is attributed to the work function modification of the ITO substrate through the strong oxygenation of KMnO4, and then the charge collection efficiency is improved.
基金Project (09C26279200863) supported by Technology Innovation Fund Project of High-tech Small and Medium Enterprises,Ministry of Science and Technology of ChinaProject (BA2011084) supported by Special Fund Project on Science and Technology Achievement Transformation of Jiangsu Province,China
文摘Al-7.5Si-4Cu cast alloy melt modified by Al-5Ti-B, RE and Al-10Sr master alloys were poured in the chromite sand moulds, to investigate comparatively the effects of individual or combined additions of grain refiners and modifiers on the mechanical properties, microstructures, grain refining and modification, and intermetallic compounds of the alloy. The results show that the mechanical properties and the microstructures of Al-7.5Si-4Cu cast alloys are improved immensely by combining addition of 0.8%Al-5Ti-B, 0.1%RE and 0.1%Al-10Sr grain refiners and modifiers compared with the individual addition and cast conditions. For individual addition condition, addition of 0.8%Al-5Ti-B master alloy can obtain superior tensile strength, Brinell hardness and finer equiaxedα(Al) dendrites. The alloy with 0.1%RE master alloy shows the highest improvement in ductility because the rare earth can purify the molten metal and change the shape of intermetallic compounds. While the alloy with 0.1%Al-10Sr modifier shows only good improvement in yield strength, and the improvement of other performance is unsatisfactory. The Al-10Sr modifier has a significant metamorphism for the eutectic silicon, but will make the gas content in the aluminum alloy melt increase to form serious columnar grain structures. The effects of grain refining and modification on mean area and aspect ratio have the same conclusions obtained in the mechanical properties and the microstructures analyses.