期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于数据挖掘算法和数值模拟技术的大气污染减排效果评估 被引量:22
1
作者 熊亚军 徐敬 +5 位作者 孙兆彬 李梓铭 吴进 尹晓梅 乔林 赵秀娟 《环境科学学报》 CAS CSCD 北大核心 2019年第1期116-125,共10页
近年来,京津冀地区采取了大量污染减排措施进行大气污染治理,如何客观评估减排效果是目前大气环境领域的研究难点.为准确评估大气污染过程的减排效果,本文利用北京地区常规气象资料、国控站PM_(2.5)浓度资料,遴选了北京地区2018年3月11... 近年来,京津冀地区采取了大量污染减排措施进行大气污染治理,如何客观评估减排效果是目前大气环境领域的研究难点.为准确评估大气污染过程的减排效果,本文利用北京地区常规气象资料、国控站PM_(2.5)浓度资料,遴选了北京地区2018年3月11—14日和2013年3月14—17日两次空气污染过程,计算了大气容量系数、静稳指数,并利用KNN数据挖掘算法和WRF-Chem模式,对比分析了有无减排条件下的PM_(2.5)日均浓度.结果表明:两次空气污染过程的天气形势和局地气象条件较相似,就大气热力和动力的垂直结构来看,2018年空气污染过程比2013年空气污染过程的大气稳定性更强、边界层高度更低、环境容量更小,但PM_(2.5)峰值浓度却显著下降,平均浓度明显降低,PM_(2.5)小时浓度的增长趋势相对平缓,重污染持续时间缩短.KNN数据挖掘算法减排评估结果显示,该方法能够较好地预测PM_(2.5)日均浓度的变化趋势,2018年3月11—14日,在减排和不减排情景下PM_(2.5)日均值分别为171和229μg·m^(-3),减排使得污染过程PM_(2.5)平均浓度下降了25.3%.数值模拟结果与KNN数据分析结论吻合,进一步验证了减排措施的有效性.综合看来,2018年空气污染过程中PM_(2.5)浓度相比历史相似气象条件下的污染过程显著降低,这是长期大力度减排效果的体现. 展开更多
关键词 北京 相似环流 knn数据挖掘算法 数值模拟 减排评估
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部