The study aims to investigate the financial technology(FinTech)factors influencing Chinese banking performance.Financial expectations and global realities may be changed by FinTech’s multidimensional scope,which is l...The study aims to investigate the financial technology(FinTech)factors influencing Chinese banking performance.Financial expectations and global realities may be changed by FinTech’s multidimensional scope,which is lacking in the traditional financial sector.The use of technology to automate financial services is becoming more important for economic organizations and industries because the digital age has seen a period of transition in terms of consumers and personalization.The future of FinTech will be shaped by technologies like the Internet of Things,blockchain,and artificial intelligence.The involvement of these platforms in financial services is a major concern for global business growth.FinTech is becoming more popular with customers because of such benefits.FinTech has driven a fundamental change within the financial services industry,placing the client at the center of everything.Protection has become a primary focus since data are a component of FinTech transactions.The task of consolidating research reports for consensus is very manual,as there is no standardized format.Although existing research has proposed certain methods,they have certain drawbacks in FinTech payment systems(including cryptocurrencies),credit markets(including peer-to-peer lending),and insurance systems.This paper implements blockchainbased financial technology for the banking sector to overcome these transition issues.In this study,we have proposed an adaptive neuro-fuzzy-based K-nearest neighbors’algorithm.The chaotic improved foraging optimization algorithm is used to optimize the proposed method.The rolling window autoregressive lag modeling approach analyzes FinTech growth.The proposed algorithm is compared with existing approaches to demonstrate its efficiency.The findings showed that it achieved 91%accuracy,90%privacy,96%robustness,and 25%cyber-risk performance.Compared with traditional approaches,the recommended strategy will be more convenient,safe,and effective in the transition period.展开更多
In the realm of contemporary artificial intelligence,machine learning enables automation,allowing systems to naturally acquire and enhance their capabilities through learning.In this cycle,Video recommendation is fini...In the realm of contemporary artificial intelligence,machine learning enables automation,allowing systems to naturally acquire and enhance their capabilities through learning.In this cycle,Video recommendation is finished by utilizing machine learning strategies.A suggestion framework is an interaction of data sifting framework,which is utilized to foresee the“rating”or“inclination”given by the different clients.The expectation depends on past evaluations,history,interest,IMDB rating,and so on.This can be carried out by utilizing collective and substance-based separating approaches which utilize the data given by the different clients,examine them,and afterward suggest the video that suits the client at that specific time.The required datasets for the video are taken from Grouplens.This recommender framework is executed by utilizing Python Programming Language.For building this video recommender framework,two calculations are utilized,for example,K-implies Clustering and KNN grouping.K-implies is one of the unaided AI calculations and the fundamental goal is to bunch comparable sort of information focuses together and discover the examples.For that K-implies searches for a steady‘k'of bunches in a dataset.A group is an assortment of information focuses collected due to specific similitudes.K-Nearest Neighbor is an administered learning calculation utilized for characterization,with the given information;KNN can group new information by examination of the‘k'number of the closest information focuses.The last qualities acquired are through bunching qualities and root mean squared mistake,by using this algorithm we can recommend videos more appropriately based on user previous records and ratings.展开更多
Mining from ambiguous data is very important in data mining. This paper discusses one of the tasks for mining from ambiguous data known as multi-instance problem. In multi-instance problem, each pattern is a labeled b...Mining from ambiguous data is very important in data mining. This paper discusses one of the tasks for mining from ambiguous data known as multi-instance problem. In multi-instance problem, each pattern is a labeled bag that consists of a number of unlabeled instances. A bag is negative if all instances in it are negative. A bag is positive if it has at least one positive instance. Because the instances in the positive bag are not labeled, each positive bag is an ambiguous. The mining aim is to classify unseen bags. The main idea of existing multi-instance algorithms is to find true positive instances in positive bags and convert the multi-instance problem to the supervised problem, and get the labels of test bags according to predict the labels of unknown instances. In this paper, we aim at mining the multi-instance data from another point of view, i.e., excluding the false positive instances in positive bags and predicting the label of an entire unknown bag. We propose an algorithm called Multi-Instance Covering kNN (MICkNN) for mining from multi-instance data. Briefly, constructive covering algorithm is utilized to restructure the structure of the original multi-instance data at first. Then, the kNN algorithm is applied to discriminate the false positive instances. In the test stage, we label the tested bag directly according to the similarity between the unseen bag and sphere neighbors obtained from last two steps. Experimental results demonstrate the proposed algorithm is competitive with most of the state-of-the-art multi-instance methods both in classification accuracy and running time.展开更多
Particle size distribution is extremely important in the coal preparation industry.It is traditionally analysed by a manual screening method,which is relatively time-consuming and cannot immediately guide production.I...Particle size distribution is extremely important in the coal preparation industry.It is traditionally analysed by a manual screening method,which is relatively time-consuming and cannot immediately guide production.In this paper,an image segmentation method for images of coal particles is proposed.It employs the watershed algorithm,k-nearest neighbour algorithm,and convex shell method to achieve preliminary segmentation,merge small pieces with large pieces,and split adhered particles,respectively.Comparing the automated segmentation using this method with manual segmentation,it is found that the results are comparable.The size distributions obtained by the automated and manual segmentation methods are nearly identical,and the standard deviation is less than 3%,indicating good reliability.This automated image segmentation method provides a new approach for rapidly analysing the size distribution of coal particles with size fractions defined according to consumer requirements.展开更多
This paper aims to provide an efficient and straightforward structural form-finding method for designers to extrapolate component forms during the conceptual stage.The core idea is to optimize the classical method of ...This paper aims to provide an efficient and straightforward structural form-finding method for designers to extrapolate component forms during the conceptual stage.The core idea is to optimize the classical method of structural form-finding based on principal stress lines by using parametric tools.The traditional operating process of this method relies excessively on the designer’s engineering experience and lacks precision.Meanwhile,the current optimization work for this method is overly complicated for architects,and limitations in component type and final result exist.Therefore,to facilitate an architect’s conceptual work,the optimization metrics of the method in this paper are set as simplicity,practicality,freedom,and rapid feedback.For that reason,this paper optimizes the method from three aspects:modeling strategy for continuum structures,classification processing of data by using the k-nearest neighbor algorithm,and topological form-finding process based on stress lines.Eventually,it allows architects to create structural texture with formal aesthetics and modify it in real time on the basis of structural analysis results.This paper also explores a comprehensive application strategy with internal force analysis diagramming to form-finding.The finite element analysis tool Karamba3D verifies the structural performance of the form-finding method.The performance is compared with that of the conventional form,and the comparison results show the practicality and potential of the strategy in this paper.展开更多
基金from funding agencies in the public,commercial,or not-for-profit sectors.
文摘The study aims to investigate the financial technology(FinTech)factors influencing Chinese banking performance.Financial expectations and global realities may be changed by FinTech’s multidimensional scope,which is lacking in the traditional financial sector.The use of technology to automate financial services is becoming more important for economic organizations and industries because the digital age has seen a period of transition in terms of consumers and personalization.The future of FinTech will be shaped by technologies like the Internet of Things,blockchain,and artificial intelligence.The involvement of these platforms in financial services is a major concern for global business growth.FinTech is becoming more popular with customers because of such benefits.FinTech has driven a fundamental change within the financial services industry,placing the client at the center of everything.Protection has become a primary focus since data are a component of FinTech transactions.The task of consolidating research reports for consensus is very manual,as there is no standardized format.Although existing research has proposed certain methods,they have certain drawbacks in FinTech payment systems(including cryptocurrencies),credit markets(including peer-to-peer lending),and insurance systems.This paper implements blockchainbased financial technology for the banking sector to overcome these transition issues.In this study,we have proposed an adaptive neuro-fuzzy-based K-nearest neighbors’algorithm.The chaotic improved foraging optimization algorithm is used to optimize the proposed method.The rolling window autoregressive lag modeling approach analyzes FinTech growth.The proposed algorithm is compared with existing approaches to demonstrate its efficiency.The findings showed that it achieved 91%accuracy,90%privacy,96%robustness,and 25%cyber-risk performance.Compared with traditional approaches,the recommended strategy will be more convenient,safe,and effective in the transition period.
文摘In the realm of contemporary artificial intelligence,machine learning enables automation,allowing systems to naturally acquire and enhance their capabilities through learning.In this cycle,Video recommendation is finished by utilizing machine learning strategies.A suggestion framework is an interaction of data sifting framework,which is utilized to foresee the“rating”or“inclination”given by the different clients.The expectation depends on past evaluations,history,interest,IMDB rating,and so on.This can be carried out by utilizing collective and substance-based separating approaches which utilize the data given by the different clients,examine them,and afterward suggest the video that suits the client at that specific time.The required datasets for the video are taken from Grouplens.This recommender framework is executed by utilizing Python Programming Language.For building this video recommender framework,two calculations are utilized,for example,K-implies Clustering and KNN grouping.K-implies is one of the unaided AI calculations and the fundamental goal is to bunch comparable sort of information focuses together and discover the examples.For that K-implies searches for a steady‘k'of bunches in a dataset.A group is an assortment of information focuses collected due to specific similitudes.K-Nearest Neighbor is an administered learning calculation utilized for characterization,with the given information;KNN can group new information by examination of the‘k'number of the closest information focuses.The last qualities acquired are through bunching qualities and root mean squared mistake,by using this algorithm we can recommend videos more appropriately based on user previous records and ratings.
基金the National Natural Science Foundation of China (Nos. 61073117 and 61175046)the Provincial Natural Science Research Program of Higher Education Institutions of Anhui Province (No. KJ2013A016)+1 种基金the Academic Innovative Research Projects of Anhui University Graduate Students (No. 10117700183)the 211 Project of Anhui University
文摘Mining from ambiguous data is very important in data mining. This paper discusses one of the tasks for mining from ambiguous data known as multi-instance problem. In multi-instance problem, each pattern is a labeled bag that consists of a number of unlabeled instances. A bag is negative if all instances in it are negative. A bag is positive if it has at least one positive instance. Because the instances in the positive bag are not labeled, each positive bag is an ambiguous. The mining aim is to classify unseen bags. The main idea of existing multi-instance algorithms is to find true positive instances in positive bags and convert the multi-instance problem to the supervised problem, and get the labels of test bags according to predict the labels of unknown instances. In this paper, we aim at mining the multi-instance data from another point of view, i.e., excluding the false positive instances in positive bags and predicting the label of an entire unknown bag. We propose an algorithm called Multi-Instance Covering kNN (MICkNN) for mining from multi-instance data. Briefly, constructive covering algorithm is utilized to restructure the structure of the original multi-instance data at first. Then, the kNN algorithm is applied to discriminate the false positive instances. In the test stage, we label the tested bag directly according to the similarity between the unseen bag and sphere neighbors obtained from last two steps. Experimental results demonstrate the proposed algorithm is competitive with most of the state-of-the-art multi-instance methods both in classification accuracy and running time.
文摘Particle size distribution is extremely important in the coal preparation industry.It is traditionally analysed by a manual screening method,which is relatively time-consuming and cannot immediately guide production.In this paper,an image segmentation method for images of coal particles is proposed.It employs the watershed algorithm,k-nearest neighbour algorithm,and convex shell method to achieve preliminary segmentation,merge small pieces with large pieces,and split adhered particles,respectively.Comparing the automated segmentation using this method with manual segmentation,it is found that the results are comparable.The size distributions obtained by the automated and manual segmentation methods are nearly identical,and the standard deviation is less than 3%,indicating good reliability.This automated image segmentation method provides a new approach for rapidly analysing the size distribution of coal particles with size fractions defined according to consumer requirements.
文摘This paper aims to provide an efficient and straightforward structural form-finding method for designers to extrapolate component forms during the conceptual stage.The core idea is to optimize the classical method of structural form-finding based on principal stress lines by using parametric tools.The traditional operating process of this method relies excessively on the designer’s engineering experience and lacks precision.Meanwhile,the current optimization work for this method is overly complicated for architects,and limitations in component type and final result exist.Therefore,to facilitate an architect’s conceptual work,the optimization metrics of the method in this paper are set as simplicity,practicality,freedom,and rapid feedback.For that reason,this paper optimizes the method from three aspects:modeling strategy for continuum structures,classification processing of data by using the k-nearest neighbor algorithm,and topological form-finding process based on stress lines.Eventually,it allows architects to create structural texture with formal aesthetics and modify it in real time on the basis of structural analysis results.This paper also explores a comprehensive application strategy with internal force analysis diagramming to form-finding.The finite element analysis tool Karamba3D verifies the structural performance of the form-finding method.The performance is compared with that of the conventional form,and the comparison results show the practicality and potential of the strategy in this paper.