Graphene(G),as a typical two-dimensional material,is often used as an additive for liquid lubricants.However,graphene is mostly added to liquid lubricants in a one-time manner in friction;it mainly exists in the form ...Graphene(G),as a typical two-dimensional material,is often used as an additive for liquid lubricants.However,graphene is mostly added to liquid lubricants in a one-time manner in friction;it mainly exists in the form of multilayer agglomerated structures due to theπ–πstacking between graphene sheets,making it unable to fully exert the synergistic lubrication function.Herein,we propose a new macroscopic superlubric system of graphene/potassium hydroxide(G/KOH)solution;and the graphene additive involved is exfoliated in-situ from graphene/epoxy(G/EP)friction pair by friction,continuously providing freshly-peeled graphene into KOH solution and minimizing the adverse effects of graphene agglomeration.Moreover,the in-situ produced graphene additive has thinner thickness and better anti-aggregation ability,which provide more graphene to accommodate OH−,form more stacked sandwich structures of OH−/graphene/OH−between friction pairs(i.e.,equivalent to a moving pulley block with more wheels),and finally realize superlubricity.This study develops a new liquid superlubric system suitable for alkaline environments,and at the same time proposes a new way to gradually release graphene additives in situ,rather than adding them all at once,deepening the understanding to liquid superlubricity mechanism,and paving the experimental foundation for the practical application of macroscopic superlubricity.展开更多
A novel wet etching method for AlGaN/GaN heterojunction structures is proposed using thermal oxidation f ollowed by wet etching in KOH solution.It is found that an AlGaN/GaN heterostructure after high temperature oxid...A novel wet etching method for AlGaN/GaN heterojunction structures is proposed using thermal oxidation f ollowed by wet etching in KOH solution.It is found that an AlGaN/GaN heterostructure after high temperature oxidation above 700℃could be etched off in a homothermal(70℃) KOH solution while the KOH solution had no etching effects on the region of the AlGaN/GaN heterostructure protected by a SiO_2 layer during the oxidation process.A groove structure with 150 nm step depth on an AlGaN/GaN heterostructure was formed after 8 h thermal oxidation at 900℃followed by 30 min treatment in 70℃KOH solution.As the oxidation time increases,the etching depth approaches saturation and the roughness of the etched surface becomes much better.The physical mechanism of this phenomenon is also discussed.展开更多
基金supported by the National Natural Science Foundation of China(52075224,21975109,51975252,and 52075225)Natural Science Foundation of Jiangsu Province(BK20201423)+1 种基金Foundation of State Key Laboratory of Solid Lubrication(LSL-1801)Tribology Science Fund of State Key Laboratory of Tribology(SKLTKF18B03).
文摘Graphene(G),as a typical two-dimensional material,is often used as an additive for liquid lubricants.However,graphene is mostly added to liquid lubricants in a one-time manner in friction;it mainly exists in the form of multilayer agglomerated structures due to theπ–πstacking between graphene sheets,making it unable to fully exert the synergistic lubrication function.Herein,we propose a new macroscopic superlubric system of graphene/potassium hydroxide(G/KOH)solution;and the graphene additive involved is exfoliated in-situ from graphene/epoxy(G/EP)friction pair by friction,continuously providing freshly-peeled graphene into KOH solution and minimizing the adverse effects of graphene agglomeration.Moreover,the in-situ produced graphene additive has thinner thickness and better anti-aggregation ability,which provide more graphene to accommodate OH−,form more stacked sandwich structures of OH−/graphene/OH−between friction pairs(i.e.,equivalent to a moving pulley block with more wheels),and finally realize superlubricity.This study develops a new liquid superlubric system suitable for alkaline environments,and at the same time proposes a new way to gradually release graphene additives in situ,rather than adding them all at once,deepening the understanding to liquid superlubricity mechanism,and paving the experimental foundation for the practical application of macroscopic superlubricity.
基金supported by the National Natural Science Foundation of China(Nos.60406004,60890193,60736033)the National Key Micrometer/Nanometer Processing Laboratory,China
文摘A novel wet etching method for AlGaN/GaN heterojunction structures is proposed using thermal oxidation f ollowed by wet etching in KOH solution.It is found that an AlGaN/GaN heterostructure after high temperature oxidation above 700℃could be etched off in a homothermal(70℃) KOH solution while the KOH solution had no etching effects on the region of the AlGaN/GaN heterostructure protected by a SiO_2 layer during the oxidation process.A groove structure with 150 nm step depth on an AlGaN/GaN heterostructure was formed after 8 h thermal oxidation at 900℃followed by 30 min treatment in 70℃KOH solution.As the oxidation time increases,the etching depth approaches saturation and the roughness of the etched surface becomes much better.The physical mechanism of this phenomenon is also discussed.