Porous carbon materials were prepared by hydrothermal carbonization(HTC) and KOH activation of camphor leaves and camellia leaves. The morphology, pore structure, chemical properties and CO2 capture ability of the por...Porous carbon materials were prepared by hydrothermal carbonization(HTC) and KOH activation of camphor leaves and camellia leaves. The morphology, pore structure, chemical properties and CO2 capture ability of the porous carbon prepared from the two leaves were compared. The effect of HTC temperature on the structure and CO2 adsorption properties was especially investigated. It was found that HTC temperature had a major effect on the structure of the product and the ability to capture CO2. The porous carbon materials prepared from camellia leaves at the HTC temperature of 240℃ had the highest proportion of microporous structure, the largest specific surface area(up to 1823.77m^2/g) and the maximum CO2 adsorption capacity of 8.30mmol/g at 25℃ under 0.4 MPa. For all prepared porous carbons, simulation results of isothermal adsorption model showed that Langmuir isotherm model described the adsorption equilibrium data better than Freundlich isotherm model. For porous carbons prepared from camphor leaves, pseudo-first order kinetic model was well fitted with the experimental data. However,for porous carbons prepared from camellia leaves, both pseudo-first and pseudo-second order kinetics model adsorption behaviors were present. The porous carbon materials prepared from tree leaves provided a feasible option for CO2 capture with low cost, environmental friendship and high capture capability.展开更多
In this paper, activated carbons (ACs) with high specific surface areas were successfully synthesized by simple one-step carbonization-activation from paulownia sawdust biomass, and the effects of the synthetic cond...In this paper, activated carbons (ACs) with high specific surface areas were successfully synthesized by simple one-step carbonization-activation from paulownia sawdust biomass, and the effects of the synthetic conditions on their CO2 capture capacity were investigated as well. The results show that, when the mass ratio between activator and biomass is 4, the activation temperature is 700℃ and the activation time is 1 h, as-made AC provides the most micropores for CO2 adsorption. As a consequence, the maximum CO2 uptake of 8.0 mmol/g is obtained at 0 ℃ and 1 bar.展开更多
基金financially supported by the National Natural Science Foundation of China (Nos. U1760119, 51472160 and U1560108)the Shanghai Nature Science Foundation (No. 16ZR1423400)the Science and Technology Commission of Shanghai Municipality (Nos. 15JC1490700 and 16JC1402200)
文摘Porous carbon materials were prepared by hydrothermal carbonization(HTC) and KOH activation of camphor leaves and camellia leaves. The morphology, pore structure, chemical properties and CO2 capture ability of the porous carbon prepared from the two leaves were compared. The effect of HTC temperature on the structure and CO2 adsorption properties was especially investigated. It was found that HTC temperature had a major effect on the structure of the product and the ability to capture CO2. The porous carbon materials prepared from camellia leaves at the HTC temperature of 240℃ had the highest proportion of microporous structure, the largest specific surface area(up to 1823.77m^2/g) and the maximum CO2 adsorption capacity of 8.30mmol/g at 25℃ under 0.4 MPa. For all prepared porous carbons, simulation results of isothermal adsorption model showed that Langmuir isotherm model described the adsorption equilibrium data better than Freundlich isotherm model. For porous carbons prepared from camphor leaves, pseudo-first order kinetic model was well fitted with the experimental data. However,for porous carbons prepared from camellia leaves, both pseudo-first and pseudo-second order kinetics model adsorption behaviors were present. The porous carbon materials prepared from tree leaves provided a feasible option for CO2 capture with low cost, environmental friendship and high capture capability.
基金support from the Top Hundred Talents Program of Chinese Academy of Sciencesthe National Natural Science Foundation of China(No.51002161)
文摘In this paper, activated carbons (ACs) with high specific surface areas were successfully synthesized by simple one-step carbonization-activation from paulownia sawdust biomass, and the effects of the synthetic conditions on their CO2 capture capacity were investigated as well. The results show that, when the mass ratio between activator and biomass is 4, the activation temperature is 700℃ and the activation time is 1 h, as-made AC provides the most micropores for CO2 adsorption. As a consequence, the maximum CO2 uptake of 8.0 mmol/g is obtained at 0 ℃ and 1 bar.