We investigate the existence of Ion-Acoustic solitary/shock waves in a five component cometary plasma consisting of positively and negatively charged oxygen ions, kappa described hydrogen ions, hot electrons and cold ...We investigate the existence of Ion-Acoustic solitary/shock waves in a five component cometary plasma consisting of positively and negatively charged oxygen ions, kappa described hydrogen ions, hot electrons and cold electrons. The KPB equation is derived for the system;its solution is plotted for different kappa values, as well as for the temperature ratios of ions. It is found that the amplitude of solitary structure increases with increasing kappa values and negatively charged oxygen ion densities. As the temperature of the positively charged oxygen ions increases, the amplitude of solitary wave also increases. We have also studied the dependence of coefficients of the KPB equation on physical parameters relevant to comet Halley.展开更多
Based on the generalized bilinear method, diversity of exact solutions of the (3 + 1)-dimensional Kadomtsev-Petviashvili-Boussinesq-like equation is successfully derived by using symbolic computation with Maple. These...Based on the generalized bilinear method, diversity of exact solutions of the (3 + 1)-dimensional Kadomtsev-Petviashvili-Boussinesq-like equation is successfully derived by using symbolic computation with Maple. These new solutions, named three-wave solutions and periodic wave have greatly enriched the existing literature. Via the three-dimensional images, density images and contour plots, the physical characteristics of these waves are well described. The new three-wave solutions and periodic solitary wave solutions obtained in this paper, will have a wide range of applications in the fields of physics and mechanics.展开更多
文摘We investigate the existence of Ion-Acoustic solitary/shock waves in a five component cometary plasma consisting of positively and negatively charged oxygen ions, kappa described hydrogen ions, hot electrons and cold electrons. The KPB equation is derived for the system;its solution is plotted for different kappa values, as well as for the temperature ratios of ions. It is found that the amplitude of solitary structure increases with increasing kappa values and negatively charged oxygen ion densities. As the temperature of the positively charged oxygen ions increases, the amplitude of solitary wave also increases. We have also studied the dependence of coefficients of the KPB equation on physical parameters relevant to comet Halley.
文摘Based on the generalized bilinear method, diversity of exact solutions of the (3 + 1)-dimensional Kadomtsev-Petviashvili-Boussinesq-like equation is successfully derived by using symbolic computation with Maple. These new solutions, named three-wave solutions and periodic wave have greatly enriched the existing literature. Via the three-dimensional images, density images and contour plots, the physical characteristics of these waves are well described. The new three-wave solutions and periodic solitary wave solutions obtained in this paper, will have a wide range of applications in the fields of physics and mechanics.