期刊文献+
共找到691篇文章
< 1 2 35 >
每页显示 20 50 100
基于SMOTE-IKPCA-SeNet深度迁移学习的小批量生产质量预测研究 被引量:1
1
作者 杨剑锋 崔少红 +1 位作者 段家琦 王宁 《工业工程》 2024年第2期98-106,157,共10页
随着智能制造技术的发展和客户个性化需求的增加,多品种小批量生产方式逐渐成为制造业的主流。面向大批量生产、以统计过程控制为核心的质量管理方式并不适用于小批量生产。针对复杂生产过程存在参数多、非线性和交互作用的问题,提出利... 随着智能制造技术的发展和客户个性化需求的增加,多品种小批量生产方式逐渐成为制造业的主流。面向大批量生产、以统计过程控制为核心的质量管理方式并不适用于小批量生产。针对复杂生产过程存在参数多、非线性和交互作用的问题,提出利用深度迁移学习的方式将历史生产数据作为源域迁移至小样本目标产品数据进行质量预测。首先,通过合成少数类过采样技术(synthetic minority over-sampling technique,SMOTE)和改进的核主成分分析(improved kernel principal component analysis,IKPCA)算法筛选源域和目标域的可迁移特征,这不仅兼顾了特征重要性和可迁移性,还减少了“负迁移”,提高了模型泛化能力;然后,采用结合通道注意力机制的卷积神经网络SeNet构建基于深度迁移学习的质量预测模型。仿真结果表明,随着目标域样本的增加,所提方法的预测准确性明显优于广泛采用的支持向量机建模方法。同时,所提可迁移特征筛选方法显著提高了深度迁移学习的质量预测效果,为复杂的小批量生产过程质量保证提供了新方法。 展开更多
关键词 小批量生产质量预测 深度迁移学习 SMOTE Ikpca SeNet
下载PDF
基于KPCA⁃XGBoost机器学习的大跨体育场风荷载预测
2
作者 艾辉林 王盛世 陶厚正 《力学季刊》 CAS CSCD 北大核心 2024年第3期834-841,共8页
大跨空间结构风荷载的取值是该类结构抗风设计关注重点,通常借助风洞试验或数值风洞确定,但其费用高周期长等特点限制其广泛应用.机器学习方法近年受到关注,逐渐应用于结构的风荷载预测并取得了不错的效果.利用核主成分分析(Kernel Prin... 大跨空间结构风荷载的取值是该类结构抗风设计关注重点,通常借助风洞试验或数值风洞确定,但其费用高周期长等特点限制其广泛应用.机器学习方法近年受到关注,逐渐应用于结构的风荷载预测并取得了不错的效果.利用核主成分分析(Kernel Principal Component Analysis,KPCA)对数据进行降维处理,借助可以集成学习的XGBoost机器学习模型,采用十折交叉验证对超参数进行选择,编写了基于机器学习的大跨空间结构风荷载预测程序.通过对多个已有工程项目风洞试验结果的学习训练和预测结果比对,证明该方法具有处理数据能力较强、预测效率较高及泛化能力较强等特点.随机选取未参与模型训练的风向角下数据进行模型准确性验证,结果表明模型的R2值均达到0.9左右,预测值与试验值较为接近,体型系数在迎风区的预测精度略低于背风区,而极值风压则在背风区的预测精度好于迎风区. 展开更多
关键词 XGBoost kpca 机器学习 体育场 风荷载预测
下载PDF
基于KPCA-LSSVM的回采工作面瓦斯涌出量的预测
3
作者 陈巧军 余浩 +2 位作者 李艳昌 谭依佳 李奕 《中国安全生产科学技术》 CAS CSCD 北大核心 2024年第4期78-84,共7页
为了提高瓦斯涌出量预测精度,针对瓦斯涌出量影响因素具有线性重叠、高维非线性等问题,提出使用核主成分分析法(KPCA)对影响因素进行非线性降维。选取沈阳某矿30组样本数据,以前24组数据作为训练集,后6组数据作为测试集,将确定后的核主... 为了提高瓦斯涌出量预测精度,针对瓦斯涌出量影响因素具有线性重叠、高维非线性等问题,提出使用核主成分分析法(KPCA)对影响因素进行非线性降维。选取沈阳某矿30组样本数据,以前24组数据作为训练集,后6组数据作为测试集,将确定后的核主成分作为最小二乘支持向量机(LSSVM)的输入变量,建立KPCA-LSSVM预测模型,将预测结果与PCA-LSSVM、LSSVM、多元非线性回归、KPCA-BP神经网络、PCA-BP神经网络以及BP神经网络预测结果进行对比。以最大相对误差绝对值作为模型预测精度的评价指标。研究结果表明:当选取前4个核主成分时,即达到模型训练要求。KPCA-LSSVM模型的预测最大相对误差绝对值为5.89%,预测精度均优于其他6种对比模型。研究结果可为实现瓦斯涌出量高精度预测提供参考。 展开更多
关键词 瓦斯涌出量的预测 核主成分分析法(kpca) 最小二乘支持向量机(LSSVM) 相对误差绝对值
下载PDF
基于KPCA-BiLSTM-iForest的瓦斯体积分数异常智能识别方法
4
作者 姜思嘉 盛武 《中国安全生产科学技术》 CAS CSCD 北大核心 2024年第4期42-48,共7页
为了实现瓦斯体积分数异常在线精准超前识别,提出1种基于多元异构数据融合的瓦斯体积分数异常识别方法(KPCA-BiLSTM-iForest),该方法采用核主成分分析(KPCA)对非线性数据进行降维和特征提取,提取主要信息并减少计算量,并采用双向长短期... 为了实现瓦斯体积分数异常在线精准超前识别,提出1种基于多元异构数据融合的瓦斯体积分数异常识别方法(KPCA-BiLSTM-iForest),该方法采用核主成分分析(KPCA)对非线性数据进行降维和特征提取,提取主要信息并减少计算量,并采用双向长短期记忆神经网络(BiLSTM)对降维后的数据进行瓦斯体积分数预测,利用隔离森林(iForest)根据预测结果及实际值相关数据进行异常检测。研究结果表明:该方法能够提前20 min检测到瓦斯体积分数异常,且异常识别准确率较KPCA-LSTM-iForest方法,KPCA-iForest方法和KPCA-BiLSTM-LOF方法可以提升3个百分点以上。研究结果可为识别瓦斯体积分数异常并提出预警提供依据。 展开更多
关键词 煤矿瓦斯 异常智能识别 在线监测数据 kpca-BiLSTM-iForest模型 工程反演
下载PDF
基于KPCA-PSO-LSSVM的轴承寿命预测研究
5
作者 丁国荣 王文波 赵姣姣 《计算机与数字工程》 2024年第3期945-949,共5页
为了预测不同工况下对于滚动轴承的最大剩余使用寿命(RUL),提出了一种基于核主成分分析(KPCA)结合粒子群优化最小二乘支持向量机(PSO-LSSVM)的滚动轴承RUL预测框架。该方法首先从时域、频域以及小波包域进行轴承故障特征提取,得到一系... 为了预测不同工况下对于滚动轴承的最大剩余使用寿命(RUL),提出了一种基于核主成分分析(KPCA)结合粒子群优化最小二乘支持向量机(PSO-LSSVM)的滚动轴承RUL预测框架。该方法首先从时域、频域以及小波包域进行轴承故障特征提取,得到一系列退化特征;其次,在尽可能多保留退化特征的前提下,运用KPCA方法进行特征约简;最后采用PSO-LSSVM构建结合的模型来预测滚动轴承的RUL。通过美国智能维护中心(IMS)提供的多组轴承衰退振动信号对模型进行验证,实验结果表明,相比较于PSO-LSSVM和KPCA-LSSVM模型,论文提出的KPCA-PSO-LSSVM的轴承剩余寿命预测方法具有更低的预测误差,可以比较准确出拟合滚动轴承的退化情况。 展开更多
关键词 剩余寿命预测 kpca-PSO-LSSVM 退化特征提取
下载PDF
基于EMD-KPCA-LSTM的抽水蓄能机组振动预测
6
作者 朱雯琪 冯陈 +2 位作者 周宇轩 张陈瑞 韩昊轩 《水电能源科学》 北大核心 2024年第8期160-163,131,共5页
针对抽水蓄能机组振动信号时间序列高度非线性、非平稳性等导致常规预测方法难以准确预测的问题,构建了结合经验模态分解(EMD)、由主成分分析(PCA)改进的核主成分分析(KPCA)和长短期记忆神经网络(LSTM)的抽水蓄能机组振动预测模型。该... 针对抽水蓄能机组振动信号时间序列高度非线性、非平稳性等导致常规预测方法难以准确预测的问题,构建了结合经验模态分解(EMD)、由主成分分析(PCA)改进的核主成分分析(KPCA)和长短期记忆神经网络(LSTM)的抽水蓄能机组振动预测模型。该模型利用EMD算法首先将振动信号进行分解,再利用KPCA筛选出关键影响因子,最后通过LSTM对特征序列进行时间动态建模,实现对抽水蓄能机组振动预测。试验结果表明,所建模型相较传统的LSTM、EMD-LSTM等预测模型具有更好的预测效果,可以更精确地预测振动信号的变化趋势。 展开更多
关键词 EMD kpca LSTM 抽水蓄能机组 振动信号 预测
下载PDF
基于KPCA和数据处理组合方法神经网络的半球谐振陀螺温度建模补偿方法
7
作者 张晨 汪立新 孔祥玉 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2024年第7期1336-1345,共10页
针对半球谐振陀螺(HRG)的温度建模与补偿问题,提出基于核主成分分析(KPCA)和数据处理组合方法(GMDH)神经网络的建模补偿方法.通过分析HRG的温度特性和大数据特征,初步确定网络模型的特征向量.为了去除HRG输出数据的相关性和冗余性,引入K... 针对半球谐振陀螺(HRG)的温度建模与补偿问题,提出基于核主成分分析(KPCA)和数据处理组合方法(GMDH)神经网络的建模补偿方法.通过分析HRG的温度特性和大数据特征,初步确定网络模型的特征向量.为了去除HRG输出数据的相关性和冗余性,引入KPCA并降低特征向量维度.将特征向量代入GMDH神经网络训练,区分训练集和验证集以确定网络权值和网络结构,实现HRG温度漂移的建模与补偿.实验结果表明,单一样本预测时,所提方法预测效果明显好于传统多项式模型;多样本预测时,在4种不同训练样本下,所提方法相比传统多项式模型精度分别提升了48.5%、54.0%、56.3%、68.4%,相比GMDH模型分别提升了3.6%、5.1%、3.8%、8.8%.所提方法能够有效提高HRG在变温工况下的测量精度. 展开更多
关键词 半球谐振陀螺(HRG) 核主成分分析(kpca) 数据处理组合方法(GMDH) 温度建模与补偿 测量精度
下载PDF
基于KPCA-CGSSA-KELM的变压器故障识别方法
8
作者 江兵 李响 +2 位作者 巢一帆 余子煜 陶锴 《电子测量与仪器学报》 CSCD 北大核心 2024年第5期139-147,共9页
针对冗余特征对变压器故障识别影响和传统方法识别准确率低的问题,提出一种基于核主成分分析(kernal principal component analysis, KPCA)与混沌麻雀搜索算法(chaos gauss sparrow search algorithm, CGSSA)优化核极限学习机(kernelize... 针对冗余特征对变压器故障识别影响和传统方法识别准确率低的问题,提出一种基于核主成分分析(kernal principal component analysis, KPCA)与混沌麻雀搜索算法(chaos gauss sparrow search algorithm, CGSSA)优化核极限学习机(kernelized extreme learning machine, KELM)的变压器故障识别方法。首先,通过KPCA对变压器故障数据进行预处理,降低特征间相关性。其次,通过引入改进Tent映射和高斯变异策略优化麻雀搜索算法提高其搜索精度和收敛速度,并将CGSSA与麻雀搜索算法(SSA)、灰狼优化算法(GWO)及鲸鱼优化算法(WOA)效果进行对比。最后,利用经KPCA处理后的特征数据作为模型输入,并通过CGSSA准确选择KELM的核函数参数和正则化系数,建立KPCA-CGSSA-KELM变压器故障识别模型。实验结果表明,在相同输入数据的情况下,CGSSA在收敛速度和寻优精度方面均有提升,且所提方法识别准确率为95.7%,较WOA-KELM、GWO-KELM、SSA-KELM分别提高18.6%、10%、15.7%。结果表明所提方法能有效处理冗余特征,提高故障识别准确率,证明了使用所提方法在在冗余特征影响的情况下进行变压器故障识别的有效性与可行性。 展开更多
关键词 变压器故障识别 核主成分分析 混沌麻雀搜索算法 核极限学习机
下载PDF
基于KPCA-GA-BP模型的页岩气集输管道的内腐蚀速率预测
9
作者 周逸轩 彭星煜 +1 位作者 耿月华 王思汗 《腐蚀与防护》 CAS CSCD 北大核心 2024年第4期63-68,共6页
针对页岩气集输管道的内腐蚀,提出了一种基于KPCA-GA-BP组合模型的腐蚀速率预测算法。以某条页岩气集输管道的检测结果作为训练数据,运用反向传播(BP)神经网络建立预测模型,运用遗传算法(GA)优化了神经网络权值和阈值的初始值,运用核主... 针对页岩气集输管道的内腐蚀,提出了一种基于KPCA-GA-BP组合模型的腐蚀速率预测算法。以某条页岩气集输管道的检测结果作为训练数据,运用反向传播(BP)神经网络建立预测模型,运用遗传算法(GA)优化了神经网络权值和阈值的初始值,运用核主成分分析法(KPCA)对数据进行了降维,在模型建立的过程中不断优化提升模型的预测精度,采用所建模型对另一条相邻管道进行预测并开挖验证。结果表明:选择TRAINGDM作为训练函数,隐含层节点为(8,1),遗传算法进化数为50,种群规模为100,交叉概率为0.3,变异概率为0.2,运用KPCA将数据从7维降为4维后,此模型的均方误差最低为0.12,当该模型用于相邻管道的预测时,均方误差为0.14。运用KPCAGA-BP模型,对页岩气集输管道内腐蚀速率进行预测具有一定的准确性,此模型可用于辅助指导现场内腐蚀直接评价等相关工作。 展开更多
关键词 页岩气集输管道 内腐蚀速率 BP神经网络 遗传算法 核主成分分析法(kpca) 均方误差(MSE)
下载PDF
基于KPCA降维分析的特高拱坝监测模型
10
作者 王子轩 陈德辉 +2 位作者 欧斌 杨石勇 傅蜀燕 《人民长江》 北大核心 2024年第10期246-254,共9页
为提高大坝变形预测精度,针对变形数据影响因子间的多重共线性问题,构建了基于核主成分分析(KPCA)、全局搜索策略的鲸鱼优化算法(GSWOA)和门控循环单元(GRU)的组合预测模型。首先利用KPCA对高维变形序列进行降维处理,同时使用GSWOA对GR... 为提高大坝变形预测精度,针对变形数据影响因子间的多重共线性问题,构建了基于核主成分分析(KPCA)、全局搜索策略的鲸鱼优化算法(GSWOA)和门控循环单元(GRU)的组合预测模型。首先利用KPCA对高维变形序列进行降维处理,同时使用GSWOA对GRU参数进行优化,进而构建出最优变形预测模型。以小湾特高拱坝变形数据为例,将KPCA-GSWOA-GRU模型与KPCA-WOA-GRU模型、PCA-GSWOA-GRU模型以及传统模型进行预测拟合对比。结果表明:KPCA-GSWOA-GRU模型有效降低了多重共线性问题,且在均方根误差(RMSE)、平均绝对误差(MAE)、平均绝对百分比误差(MAPE)和决定系数(R^(2))等方面均优于对比模型。 展开更多
关键词 特高拱坝 变形监测 降维分析 核主成分分析(kpca) 全局搜索策略的鲸鱼优化算法(GSWOA) 门控循环单元(GRU) 小湾水电站
下载PDF
一种基于KPCA-IF的配电网保护系统异常状况监测模型
11
作者 徐军 齐蓬勃 +2 位作者 李凡 王国荣 弋富国 《电力科学与技术学报》 CAS CSCD 北大核心 2024年第3期31-37,共7页
由于配电网具有拓扑结构复杂、线路分支较多、空间分布密集等特性,潜在运行扰动及故障难以完全避免,故所配备的保护系统势必确保较高水平的可靠性及稳定性。因此,针对配网保护系统潜在异常运行状态的监测与识别面临新的挑战。为此,提出... 由于配电网具有拓扑结构复杂、线路分支较多、空间分布密集等特性,潜在运行扰动及故障难以完全避免,故所配备的保护系统势必确保较高水平的可靠性及稳定性。因此,针对配网保护系统潜在异常运行状态的监测与识别面临新的挑战。为此,提出一种基于数据驱动的运行异常状态实时检测模型。首先,采用核函数主成分分析(kernel principal components analysis,KPCA)流程,针对原始数据实施维度压缩,能够在高维数据环境下降低后续模型的运算复杂度;其次,应用孤立森林(isolated forest,IF)模型,依据各正常运行状态取值范围,挖掘潜在离群样本点,能够在数据呈偏置或稀疏分布环境下保持较高的检测性能,针对异常状况进行快速反应;最后,以某地区配电网继保系统运行数据作为仿真实例,实验结果验证所提出模型在实际应用中较高的异常检测水平,能够助力配网安全风险的自动识别和应对。 展开更多
关键词 异常检测 数据挖掘 继电保护系统 kpca-IF
下载PDF
【WECC】KPCA SHOW 2024在韩国仁川开幕
12
《印制电路信息》 2024年第9期9-9,共1页
韩国国际电子电路及组装产业展KPCA SHOW 2024于2024年9月4日在韩国仁川松岛会展中心开幕。本次展览会由韩国电子回路产业协会(KPCA)主办,KY EXPOSITION CORP承办,由韩国产业通商资源部、京畿道、电子新闻(Electronics Times)、韩国产... 韩国国际电子电路及组装产业展KPCA SHOW 2024于2024年9月4日在韩国仁川松岛会展中心开幕。本次展览会由韩国电子回路产业协会(KPCA)主办,KY EXPOSITION CORP承办,由韩国产业通商资源部、京畿道、电子新闻(Electronics Times)、韩国产业园区公社。 展开更多
关键词 韩国产业 产业协会 产业园区 韩国仁川 京畿道 会展中心 SHOW kpca
下载PDF
基于KPCA算法的智能发电厂电力设备运行故障在线诊断方法
13
作者 他智祖 《电力设备管理》 2024年第10期83-85,共3页
本文研究基于KPCA算法的智能发电厂电力设备运行故障在线诊断方法,采用滤波技术和小波变换去除并重构图像中的噪声,在特征空间进行内积运算,建立故障模型,整合数据并设定置信门限值。若统计量超过门限值,触发故障预警。测试结果显示,该... 本文研究基于KPCA算法的智能发电厂电力设备运行故障在线诊断方法,采用滤波技术和小波变换去除并重构图像中的噪声,在特征空间进行内积运算,建立故障模型,整合数据并设定置信门限值。若统计量超过门限值,触发故障预警。测试结果显示,该方法10组测试的准确率均超过99%,能准确、实时地聚类并诊断故障。 展开更多
关键词 kpca算法 智能发电厂 运行故障诊断
下载PDF
基于KPCA-FCM工况精简的机组燃烧优化
14
作者 李泳萱 田亮 董子健 《华北电力大学学报(自然科学版)》 CAS 北大核心 2024年第2期135-142,共8页
针对深度调峰下运行工况频繁变动使锅炉燃烧优化参数调整难度增大的问题,提出了一种基于KPCA-FCM工况精简的燃烧优化方法。首先对锅炉实际历史运行数据提取稳态工况后,通过核主成分分析法(KPCA)进行降维,选取贡献率较大的运行参数利用... 针对深度调峰下运行工况频繁变动使锅炉燃烧优化参数调整难度增大的问题,提出了一种基于KPCA-FCM工况精简的燃烧优化方法。首先对锅炉实际历史运行数据提取稳态工况后,通过核主成分分析法(KPCA)进行降维,选取贡献率较大的运行参数利用模糊聚类算法(FCM)进行分析完成工况划分,实现对工况的精简。然后对不同的燃烧工况匹配对应的工况簇,调整燃烧参数到该类的最佳运行参数。为了验证该方法的合理性,采用最小二乘支持向量机辨识锅炉燃烧热效率模型。以高低两个工况区间为例进行仿真验证,结果表明提取到的最优运行参数目标值可以使锅炉热效率最高提升0.2%。因此,提出的工况精简方法可有效选取最优运行目标值,为现场运行人员调整运行参数提高锅炉效率提供了合理的数据参考。 展开更多
关键词 工况精简 燃烧优化 主成分分析法 模糊聚类 锅炉效率
下载PDF
基于OVMD-KPCA-RTH-GRU的短期光伏发电功率预测
15
作者 王红徐 严新军 +2 位作者 夏庆成 刘佳琪 王雪虎 《水力发电》 CAS 2024年第9期98-103,共6页
针对光伏发电功率的随机性、波动性和非线性问题,提出了一种结合经红尾鵟(RTH)算法优化的变分模态分解(VMD)、核主成分分析(KPCA)和经RTH算法优化的门控循环单元(GRU)神经网络的光伏发电功率预测模型。首先,使用RTH算法对VMD和GRU神经... 针对光伏发电功率的随机性、波动性和非线性问题,提出了一种结合经红尾鵟(RTH)算法优化的变分模态分解(VMD)、核主成分分析(KPCA)和经RTH算法优化的门控循环单元(GRU)神经网络的光伏发电功率预测模型。首先,使用RTH算法对VMD和GRU神经网络的5个超参数进行优化;接着,应用优化后的VMD方法分解原始数据,以减少光伏数据的波动性和随机性;然后,采用KPCA方法降低数据维度,消除冗余;最后,利用经RTH优化的GRU神经网络模型进行时序建模。通过分析新疆某光伏电站的历史发电数据,并与GRNN、LSTM、GRU以及OVMD-GRU、OVMD-KPCA-GRU模型相比较,本模型的拟合优度高达98.96%,显示出更高的预测精度。 展开更多
关键词 变分模态分解 核主成分分析 红尾鵟优化算法 门控循环神经网络 光伏功率预测
下载PDF
基于肌音信号的KPCAGASVM步态模式识别
16
作者 吴碧霞 管小荣 +1 位作者 李仲 史亦凡 《信息技术》 2024年第5期52-59,65,共9页
外骨骼机器人发展迅速,基于生理信号的运动意图识别在人机协同控制研究中得以重视。针对肌电信号易受肌肉疲劳影响和采集要求高的缺点,提出一种基于肌音信号的核主成分分析和改进支持向量机(KPCAGASVM)的模式识别方案,对平地行走、上楼... 外骨骼机器人发展迅速,基于生理信号的运动意图识别在人机协同控制研究中得以重视。针对肌电信号易受肌肉疲劳影响和采集要求高的缺点,提出一种基于肌音信号的核主成分分析和改进支持向量机(KPCAGASVM)的模式识别方案,对平地行走、上楼下楼和上坡下坡5种步态进行模式识别研究。基于遗传算法进行参数调优,其识别方案KPCAGASVM的识别准确率为97.33%,优于PCAGASVM和其他分类器。实验验证,基于肌音信号的KPCAGASVM为一种高效的步态运动识别方案。 展开更多
关键词 外骨骼 肌音信号 遗传算法 支持向量机 核主成分分析
下载PDF
非盲源KPCA剩余噪声比阈值层析SAR成像方法
17
作者 刘慧 程碧辉 +2 位作者 庞蕾 郭子夜 王潜 《现代雷达》 CSCD 北大核心 2024年第5期13-18,共6页
合成孔径雷达(SAR)层析成像技术是基于干涉SAR测量技术发展而来的先进三维成像技术。层析SAR通过第三维反演技术将叠掩在同一距离-方位分辨单元的散射体进行分离而实现SAR的三维成像。因此,叠掩在同一距离-方位分辨单元的散射体分离是... 合成孔径雷达(SAR)层析成像技术是基于干涉SAR测量技术发展而来的先进三维成像技术。层析SAR通过第三维反演技术将叠掩在同一距离-方位分辨单元的散射体进行分离而实现SAR的三维成像。因此,叠掩在同一距离-方位分辨单元的散射体分离是层析成像的关键。文中提出了一种非盲源散射体分离算法,结合核主成分分析和剩余噪声比阈值,估计同一距离-方位分辨单元内散射体的个数,并反演其位置。在满足完整度的同时,尽可能抑制噪声。该方法利用核主成分分析,人为增加核矩阵维度,从而减少系统的导向向量偏差;并且加入剩余成分中噪声强度比的计算作为算法的约束条件,从而降低了噪声信号误判的可能性。实验结果表明,所提方法在各个方面都优于传统的层析反演方法,并且高度重建精度得到一定程度的提高。 展开更多
关键词 非线性散射体分离 层析合成孔径雷达 核主成分分析 合成孔径雷达三维成像
下载PDF
基于小波KPCA-SSA-ELM的盐穴储气库注采管柱内腐蚀速率预测 被引量:4
18
作者 骆正山 欧阳长风 +1 位作者 王小完 张新生 《安全与环境学报》 CAS CSCD 北大核心 2023年第7期2238-2245,共8页
为提升盐穴储气库注采管柱的内腐蚀速率预测精度,建立了基于小波核主成分分析方法(Kernel Principal Components Analysis, KPCA)和樽海鞘群算法(Salp Swarm Algorithm, SSA)优化的极限学习机(Extreme Learning Machine, ELM)腐蚀速率... 为提升盐穴储气库注采管柱的内腐蚀速率预测精度,建立了基于小波核主成分分析方法(Kernel Principal Components Analysis, KPCA)和樽海鞘群算法(Salp Swarm Algorithm, SSA)优化的极限学习机(Extreme Learning Machine, ELM)腐蚀速率预测模型。首先通过小波KPCA提取影响注采管柱内腐蚀的主要特征,应用ELM建立盐穴储气库注采管柱内腐蚀速率预测模型,并采用SSA对模型参数进行迭代寻优,避免原参数选取的强随机性对模型泛化能力和预测性能的影响。结果表明,经小波KPCA特征提取后得到包含98.73%原信息的3项主成分,SSA-ELM模型的预测结果与实际值基本吻合,其均方根误差(E_(RMS))为0.009 3,平均绝对百分比误差(E_(MAP))为0.336 0%,决定系数(R~2)高达0.991 2,较其他3种对比模型性能更优。研究表明,所建模型具有强泛化性能和高预测精度,能够有效预测盐穴储气库注采管柱的内腐蚀速率,为盐穴储气库注采系统的完整性评价和风险预警提供参考。 展开更多
关键词 安全工程 盐穴储气库 注采管柱 内腐蚀速率 核主成分分析法(kpca) 樽海鞘群算法(SSA) 极限学习机(ELM)
下载PDF
基于KPCA-LSTM的旋转机械剩余使用寿命预测 被引量:1
19
作者 曹现刚 叶煜 +2 位作者 赵友军 段雍 杨鑫 《振动与冲击》 EI CSCD 北大核心 2023年第24期81-91,共11页
旋转机械的剩余使用寿命(remaining useful life, RUL)预测对工业设备预测和健康管理的具有重要意义。该文针对多传感器冗余数据导致旋转机械退化信息提取困难、剩余使用寿命预测效果差的问题,提出了一种基于核主成分分析-长短期记忆网... 旋转机械的剩余使用寿命(remaining useful life, RUL)预测对工业设备预测和健康管理的具有重要意义。该文针对多传感器冗余数据导致旋转机械退化信息提取困难、剩余使用寿命预测效果差的问题,提出了一种基于核主成分分析-长短期记忆网络(kernel principal component analysis-long short term memory, KPCA-LSTM)的方法对旋转机械剩余使用寿命预测。首先,分析旋转机械的多维退化数据,选择可以表征旋转机械退化的数据;其次,对退化数据进行(kernel principal component analysis, KPCA)融合及特征提取,将降维融合的特征作为预测模型的输入;然后构建旋转机械的健康指标,并通过多阶微分划分旋转机械的不同健康状态,建立KPCA-LSTM模型对旋转机械的剩余使用寿命进行预测;最后,在实验室搭建的矿用减速器平台上进行了试验验证。试验结果表明:该文所提方法与LSTM、粒子群优化LSTM的方法比较,该方法预测效果优于其他两种模型,并降低模型训练的复杂性,减少预测用时。 展开更多
关键词 旋转机械 核主成分分析(kpca) 贝叶斯参数优化 长短期记忆网络(LSTM) 剩余使用寿命(RUL)预测
下载PDF
基于KPCA和BiLSTM的分解炉出口温度预测 被引量:4
20
作者 孟忍 董学平 甘敏 《合肥工业大学学报(自然科学版)》 CAS 北大核心 2023年第2期169-174,共6页
水泥生产过程中,分解炉出口温度是非常重要的工艺参数,为了应对出口温度变量的多样性,文章提出一种核主成分分析(kernel principal component analysis,KPCA)与双向长短期记忆(bidirectional long short-term memory,BiLSTM)神经网络相... 水泥生产过程中,分解炉出口温度是非常重要的工艺参数,为了应对出口温度变量的多样性,文章提出一种核主成分分析(kernel principal component analysis,KPCA)与双向长短期记忆(bidirectional long short-term memory,BiLSTM)神经网络相结合的温度预测组合模型用来预测分解炉的出口温度。通过KPCA筛选出影响因素的主成分从而达到数据降维目的,将降维后的主成分作为BiLSTM神经网络的输入,分解炉出口温度作为BiLSTM神经网络的输出。经BiLSTM神经网络训练,得到分解炉出口温度预测模型。通过对比验证表明,使用KPCA-BiLSTM相结合的温度预测模型具有较好的预测精度。 展开更多
关键词 水泥分解炉 出口温度 核主成分分析(kpca) 双向长短期记忆(BiLSTM)神经网络 降维 预测
下载PDF
上一页 1 2 35 下一页 到第
使用帮助 返回顶部