期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
KPCA-GRNN网络在数控机床复合故障诊断中的应用 被引量:6
1
作者 李善 谭继文 +1 位作者 俞昆 文妍 《煤矿机械》 2016年第3期152-154,共3页
提出了一种将核主元分析法(KPCA)与GRNN网络相结合的数控机床复合故障诊断方法。原始复合信号经过EMD分解,将得到的IMF与其他时频域特征值组成原始信号特征集;运用KPCA方法对原始特征集进行降维处理,构造核主元特征集;将筛选后的特征向... 提出了一种将核主元分析法(KPCA)与GRNN网络相结合的数控机床复合故障诊断方法。原始复合信号经过EMD分解,将得到的IMF与其他时频域特征值组成原始信号特征集;运用KPCA方法对原始特征集进行降维处理,构造核主元特征集;将筛选后的特征向量作为GRNN网络的输入,实现了数控机床不同复合故障的模式识别,并与其他3种网络对比,验证了该方法的优越性。 展开更多
关键词 核主元分析法(KPCA) GRNN神经网络 复合故障 故障诊断
下载PDF
燃气轮机关键部件故障诊断方法研究 被引量:1
2
作者 崔建国 刘瑶 +1 位作者 郑蔚 蒋丽英 《机械设计与制造》 北大核心 2018年第11期25-28,共4页
燃气轮机的工作环境恶劣,突发情况和出现故障的模式多、几率大。为此研究有效地燃气轮机故障诊断方法尤为重要。提出了一种EMD小波阈值降噪和KPCA-GRNN相结合的方法,对燃气轮机喷口加力调节器故障诊断进行了深入研究。针对某型真实燃气... 燃气轮机的工作环境恶劣,突发情况和出现故障的模式多、几率大。为此研究有效地燃气轮机故障诊断方法尤为重要。提出了一种EMD小波阈值降噪和KPCA-GRNN相结合的方法,对燃气轮机喷口加力调节器故障诊断进行了深入研究。针对某型真实燃气轮机进行测试试验采集的喷口加力调节器高压转子转速、低压转子转速等八个参数数据,首先采用经验模态分解(EMD)方法对8个参量信号进行EMD分解,然后采用软阈值函数对其进行小波降噪,并进行信号重构,从而可得到燃气轮机喷调工作状态有效数据。在此基础上采用核主元分析法提取喷口加力调节器样本集的不同主元,构建特征向量,并由特征向量建立GRNN神经网络故障诊断模型,通过测试数据进行试验验证,验证了该方法的有效性。此外,尚采用基于KPCA-GRNN的方法对传感器感知的喷口加力调节器的八个参数原始数据进行了诊断方法研究。结果表明,采用EMD小波阈值降噪和KPCA-GRNN相结合的方法,能有效识别出喷口加力调节器不同的状态,具有很好的实际应用价值。 展开更多
关键词 燃气轮机 故障诊断 EMD 小波阈值降噪 kpca-grnn
下载PDF
KPCA与GRNN在含能化合物QSAR中的应用研究
3
作者 牛永洁 陈莉 李富星 《计算机应用与软件》 CSCD 2009年第7期112-114,共3页
使用KPCA(核主成分分析)对含能化合物的结构参数进行参数选择,在保持原有数据主要信息的情形下,得到数据的主成分。将降维后的特征信息作为GRNN(广义回归神经网络)的输入,含能化合物的性能数据作为输出,建立非线性的定量含能化合物结构... 使用KPCA(核主成分分析)对含能化合物的结构参数进行参数选择,在保持原有数据主要信息的情形下,得到数据的主成分。将降维后的特征信息作为GRNN(广义回归神经网络)的输入,含能化合物的性能数据作为输出,建立非线性的定量含能化合物结构性能关系预测模型。与PCA_GRNN模型的比较表明,该模型能很好地反映含能化合物结构和性能之间的关系,具有较高的预测正确率。 展开更多
关键词 核主成分分析 广义回归神经网络 结构性能关系 含能化合物
下载PDF
基于KPCA-BAS-GRNN的埋地管道外腐蚀速率预测 被引量:21
4
作者 骆正山 姚梦月 +1 位作者 骆济豪 王小完 《表面技术》 EI CAS CSCD 北大核心 2018年第11期173-180,共8页
目的提高埋地管道外腐蚀速率的预测精度。方法建立基于核主成分分析法(KPCA)和天牛须搜索(BAS)算法优化的广义回归神经网络(GRNN)腐蚀速率预测模型,通过KPCA对原始数据进行预处理,提取影响管道外腐蚀的主要因素,应用GRNN建立埋地管道外... 目的提高埋地管道外腐蚀速率的预测精度。方法建立基于核主成分分析法(KPCA)和天牛须搜索(BAS)算法优化的广义回归神经网络(GRNN)腐蚀速率预测模型,通过KPCA对原始数据进行预处理,提取影响管道外腐蚀的主要因素,应用GRNN建立埋地管道外腐蚀速率预测的数学模型,并采用BAS算法对模型进行优化,减小了人为设置参数的影响。以川气东送埋地管段为例,分析选取出12种关键影响因素,建立了埋地管道外腐蚀指标体系,借助MATLAB-R2014a编写程序进行仿真,并与实际值进行对比。结果模型的预测结果与实际值基本一致,KPCA可有效降低指标体系的维度,提取出包含原始信息97.9%的3个主因素—土壤电阻率、氧化还原电位、氯离子含量,简化了运算过程。采用的BAS-GRNN模型将预测精度提高到7.83%以内,平均相对误差5.21%,决定系数取值0.93。与其他模型相比,该模型性能较好,预测精度更高。结论采用KPCA提取的主要影响因素符合工程实际,建立的BAS-GRNN模型预测精度高,有较好的适应性,为埋地管道外腐蚀速率预测提供了新思路,对管道的维护更新工作提供了参考依据。 展开更多
关键词 埋地管道 外腐蚀速率预测模型 核主成分分析法(KPCA) 天牛须搜索算法(BAS) 广义回归神经网络(GRNN)
下载PDF
基于小波包-KPCA特征提取的三种人工焊缝缺陷检测方法 被引量:3
5
作者 李娟 郄晓敏 +3 位作者 陈凌霄 韩也 曹显林 袁慧英 《油气田地面工程》 2021年第1期7-12,共6页
为了减少超声波检测中人为造成的缺陷误判,实现焊缝缺陷的定量评价,采用16MnR焊接试件预制了表面裂纹、气孔和夹杂等三种人工缺陷,进行焊缝缺陷检测试验。利用超声相控阵对其进行了A扫,采用小波包变换的方式对信号进行三层分解处理,通过... 为了减少超声波检测中人为造成的缺陷误判,实现焊缝缺陷的定量评价,采用16MnR焊接试件预制了表面裂纹、气孔和夹杂等三种人工缺陷,进行焊缝缺陷检测试验。利用超声相控阵对其进行了A扫,采用小波包变换的方式对信号进行三层分解处理,通过Matlab构造特征向量能量比例,并采用KPCA进行数据降维,选取了累积贡献率超过90%的前3个主元成分,结合GRNN实现不同缺陷类型的自动分类。研究结果表明,使用小波包-KPCA进行特征提取后,可以进一步去除噪声对焊缝缺陷检测的影响,降低计算时间,准确率可达93.3%,优于常规特征值分析。小波包-KPCA可作为超声信号提取的新手段,为今后的无损检测评价提供理论依据和重要参考。 展开更多
关键词 焊缝缺陷 特征向量 小波包 KPCA GRNN
下载PDF
充填管道磨损风险的KPCA-PSO-GRNN评估模型及应用 被引量:4
6
作者 李晓晨 聂兴信 《有色金属工程》 CAS 北大核心 2019年第2期84-92,共9页
针对影响充填管道磨损风险因素的复杂性和不确定性,为更加科学准确的预测充填管道的磨损状况,减少由管道磨损带来的矿山损失,构建了一种基于核主成分分析(KPCA)和粒子群算法(PSO)优化广义回归神经网络(GRNN)的充填管道磨损风险评估模型... 针对影响充填管道磨损风险因素的复杂性和不确定性,为更加科学准确的预测充填管道的磨损状况,减少由管道磨损带来的矿山损失,构建了一种基于核主成分分析(KPCA)和粒子群算法(PSO)优化广义回归神经网络(GRNN)的充填管道磨损风险评估模型。建立充填管道磨损风险评估指标体系,运用KPCA,对数据进行特征提取,将其结果作为GRNN的输入,采用PSO算法优化选取GRNN的光滑因子,完成GRNN的训练和学习,将该模型应用于国内某矿山充填管道的磨损风险评估中,并与其它模型进行对比。结果表明,利用该模型可以准确的预测充填管道磨损风险等级,与实际情况相一致。工程应用实例表明,所建模型预测精度更高,适用性更好,对充填管道的磨损评估具有较好的借鉴意义。 展开更多
关键词 核主成分分析(KPCA) 粒子群优化(PSO)算法 广义回归神经网络(GRNN) 充填管道 磨损风险评估
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部