The Philippine Sea Plate has an extremely special tectonic background. As an oceanic plate,it is almost entirely surrounded by subduction zones with complex internal tectonic features. On the basis of enormous publish...The Philippine Sea Plate has an extremely special tectonic background. As an oceanic plate,it is almost entirely surrounded by subduction zones with complex internal tectonic features. On the basis of enormous published literature,this paper offers a comprehensive overview of the tectonic and evolution history of the Philippine Basin and the Kyushu-Palau Ridge(KPR) in the Philippine Sea Plate,and discusses the geological features of KPR. Referring to relevant definitions of various "ridges" stipulated in United Nations Convention on the Law of the Sea,so the KPR is believed to be a remnant arc formed during the opening of the Parece Vela and Shikoku Basins in the Philippine Sea Plate. It is a submarine ridge on oceanic plate rather than a submarine elevation. And thus,it is not a natural component of the Japan continental margin.展开更多
The Philippine Basin,surrounded by a series of oceanic trenches,is an independent deep ocean basin in the West Pacific Ocean.Its middle part is divided into three marginal sea sub-basins by the Kyushu-Palau and West M...The Philippine Basin,surrounded by a series of oceanic trenches,is an independent deep ocean basin in the West Pacific Ocean.Its middle part is divided into three marginal sea sub-basins by the Kyushu-Palau and West Mariana Ridges,namely,the West Philippine Basin,the Shikoku and Parece Vela Basins and the Mariana Trough.This paper,through the analysis of the geomorphologic features and gravity and magnetic characteristics of the basin and identification of striped magnetic anomalies,suggests that the entire Philippine Basin developed magnetic lineation of oceanic nature,and therefore,the entire basin is of the nature of oceanic crust.The basin has developed a series of special geomorphic units with different shapes.The KPR runs through the entire Philippine Basin.From the view of geomorphologic features,the KPR is a discontinuous seamount chain (chain-shaped seamounts) and subduction beneath the Japanese Island arc at the Nankai Trough which is the natural boundary between the basin and the Japanese Island arc.At the positions of 25 N,24 N,23 N and 18 N,obvious discontinuity is shown,which belongs to natural topographic discontinuity.Therefore,the KPR is topographically discontinuous.展开更多
Based on the published data of structure geology,geochronology,petrology and isotope geochemistry,the authors of this paper have conducted studies on the tectonic evolution history of Japan arc system and Kyushu-Palau...Based on the published data of structure geology,geochronology,petrology and isotope geochemistry,the authors of this paper have conducted studies on the tectonic evolution history of Japan arc system and Kyushu-Palau ridge(KPR) . The studies show that the initial Japan arc system was resulted from the subduction of ancient Pacific plate beneath Eurasian Plate in Permian. It was part of an Andean-type continental volcanic arc which occurred in the offshore in the east of Asian during late Mesozoic era. The formation of tertiary back-arc basin(Japan Sea) resulted in the fundamental tectonic framework of the present arc system. Since Quaternary the system has been lying at E-W compression tectonic setting due to the eastward subduction of Amur Plate. It is expected that Japan arc system will be juxtaposed with Asian continent,which is similar to the present Taiwan arc system. The origin of Philippine Sea Plate(PSP) is still in debate. Some studies argued that it is a trapped oceanic crust segment,while the others insisted that it is a back-arc basin accompanied with ancient IBM arc. However,it is all agreed that the tectonic evolution of PSP started since 50 Ma,i.e.,PSP has drifted from the site around equator at 50 Ma to the present site,and the subduction of PSP along Nankai trough-Ryukyu Trench beneath the Japan arc system during 6–2 Ma led to the formation of the present Ryukyu arc system. Of the PSP,the KPR has been found with the oldest rocks formed at 38 Ma. Combining with its geochemical characteristics of oceanic arc tholeiite,it is suggested that KPR is an intraoceanic volcanic arc,more specifically,a relic arc(i.e.,rear arc of the ancient IBM) after rifting of ancient IBM. In addition,Amami-Daito province is of arc tectonic affinity,but has been affected by mantle plume. Therefore,based on their respective tectonic evolution history and geochemical characteristics of rock samples,it is inferred that there is no genetic relationship between Japan arc system and KPR. It is noted that rocks reflecting continental crust basement feature have been collected on the northern tip of KPR,which may be related to the process of KPR accreting on Japan arc,but the arc-continent accretion process are still at initial stage of modern continental crust accretion model. However,due to the scarcity of data of the northern tip of KPR,crustal structure of this location and its adjacent Nankai trough need to be further constrained by geophysical studies in the future.展开更多
This study investigates the cloud macro-and micro-physical characteristics in the convective and stratiform regions and their different responses to the seeding for mixed convective-stratiform clouds that occurred in ...This study investigates the cloud macro-and micro-physical characteristics in the convective and stratiform regions and their different responses to the seeding for mixed convective-stratiform clouds that occurred in Shandong province on 21 May 2018,based on the observations from the aircraft,the Suomi National Polar-Orbiting Partnership(NPP)satellite,and the high-resolution Himawari-8(H8)satellite.The aircraft observations show that convection was deeper and radar echoes were significantly enhanced with higher tops in response to seeding in the convective region.This is linked with the conversion of supercooled liquid droplets to ice crystals with released latent heat,resulting in strengthened updrafts,enhanced radar echoes,higher cloud tops,and more and larger precipitation particles.In contrast,in the stratiform cloud region,after the Silver Iodide(AgI)seeding,the radar echoes become significantly weaker at heights close to the seeding layer,with the echo tops lowered by 1.4–1.7 km.In addition,a hollow structure appears at the height of 6.2–7.8 km with a depth of about 1.6 km and a diameter of about 5.5 km,and features such as icing seeding tracks appear.These suggest that the transformation between droplets and ice particles was accelerated by the seeding in the stratiform part.The NPP and H8 satellites also show that convective activity was stronger in the convective region after seeding;while in the stratiform region,a cloud seeding track with a width of 1–3 km appears 10 km downstream of the seeding layer 15 minutes after the AgI seeding,which moves along the wind direction as width increases.展开更多
The southern part of the Kyushu-Palau Ridge(KPR)is located at the conjunction of the West Philippine Basin,the Parece Vela Basin,the Palau Basin,and the Caroline Basin.This area has extremely complex structures and is...The southern part of the Kyushu-Palau Ridge(KPR)is located at the conjunction of the West Philippine Basin,the Parece Vela Basin,the Palau Basin,and the Caroline Basin.This area has extremely complex structures and is critical for the research on the tectonic evolution of marginal seas in the Western Pacific Ocean.However,only few studies have been completed on the southern part,and the geophysical fields and deep structures in this part are not well understood.Given this,this study finely depicts the characteristics of the gravity and magnetic anomalies and extracts information on deep structures in the southern part of the KPR based on the gravity and magnetic data obtained from the 11th expedition of the deep-sea geological survey of the Western Pacific Ocean conducted by the Guangzhou Marine Geological Survey,China Geological Survey using the R/V Haiyangdizhi 6.Furthermore,with the data collected on the water depth,sediment thickness,and multichannel seismic transects as constraints,a 3D density model and Moho depths of the study area were obtained using 3D density inversion.The results are as follows.(1)The gravity and magnetic anomalies in the study area show distinct zoning and segmentation.In detail,the gravity and magnetic anomalies to the south of 11°N of the KPR transition from high-amplitude continuous linear positive anomalies into low-amplitude intermittent linear positive anomalies.In contrast,the gravity and magnetic anomalies to the north of 11°N of the KPR are discontinuous and show alternating positive and negative anomalies.These anomalies can be divided into four sections,of which the separation points correspond well to the locations of deep faults,thus,revealing different field-source attributes and tectonic genesis of the KPR.(2)The Moho depth in the basins in the study area is 6-12 km.The Moho depth in the southern part of KPR show segmentation.Specifically,the depth is 10‒12 km to the north of 11°N,12‒14 km from 9.5°N to 11°N,14-16 km from 8.5°N to 9.5°N,and 16‒25 km in the Palau Islands.(3)The KPR is a remnant intra-oceanic arc with the oceanic-crust basement.which shows noticeably discontinuous from north to south in geological structure and is intersected by NEE-trending lithospheric-scale deep faults.With large and deep faults F3 and F1(the Mindanao fault)as boundaries overall,the southern part of the KPR can be divided into three zones.In detail,the portion to the south of 8.5°N(F3)is a tectonically active zone,the KPR portion between 8.5°N and 11°N is a tectonically active transition zone,and the portion to the north of 11°N is a tectonically inactive zone.(4)The oceanic crust in the KPR is slightly thicker than that in the basins on both sides of the ridge,and it is inferred that the KPR formed from the thickening of the oceanic crust induced by the upwelling of deep magma in the process of rifting of remnant arcs during the Middle Oligocene.In addition,it is inferred that the thick oceanic crust under the Palau Islands is related to the constant upwelling of deep magma induced by the continuous northwestward subduction of the Caroline Plate toward the Palau Trench since the Late Oligocene.This study provides a scientific basis for systematically understanding the crustal attributes,deep structures,and evolution of the KPR.展开更多
基金The National Basic Research Program (973) of China under contract No. 2007CB41170301Special Fund for Marine Scientific Research in the Public Interest under contract Nos 200805078, 201205003 and 201205037
文摘The Philippine Sea Plate has an extremely special tectonic background. As an oceanic plate,it is almost entirely surrounded by subduction zones with complex internal tectonic features. On the basis of enormous published literature,this paper offers a comprehensive overview of the tectonic and evolution history of the Philippine Basin and the Kyushu-Palau Ridge(KPR) in the Philippine Sea Plate,and discusses the geological features of KPR. Referring to relevant definitions of various "ridges" stipulated in United Nations Convention on the Law of the Sea,so the KPR is believed to be a remnant arc formed during the opening of the Parece Vela and Shikoku Basins in the Philippine Sea Plate. It is a submarine ridge on oceanic plate rather than a submarine elevation. And thus,it is not a natural component of the Japan continental margin.
基金973 Jointly funded by Cenozoic Sequence Stratigraphy and Sedimentary Evolution of Continental Margin of the East China Sea under contract No.2007CB41170301Research on Sedimentary Features and Sedimentary Filling of the Lower Slope Basin in the Deep Water Area of the Middle and Northern South China Sea of the Special Fund Program of Basic Scientific Research Expenses under contract No.JG1007Supporting Technologies for Delimitation of Continental Shelves and Exclusive Economic Zones under contract Nos 200805078,201205037 and 201205003
文摘The Philippine Basin,surrounded by a series of oceanic trenches,is an independent deep ocean basin in the West Pacific Ocean.Its middle part is divided into three marginal sea sub-basins by the Kyushu-Palau and West Mariana Ridges,namely,the West Philippine Basin,the Shikoku and Parece Vela Basins and the Mariana Trough.This paper,through the analysis of the geomorphologic features and gravity and magnetic characteristics of the basin and identification of striped magnetic anomalies,suggests that the entire Philippine Basin developed magnetic lineation of oceanic nature,and therefore,the entire basin is of the nature of oceanic crust.The basin has developed a series of special geomorphic units with different shapes.The KPR runs through the entire Philippine Basin.From the view of geomorphologic features,the KPR is a discontinuous seamount chain (chain-shaped seamounts) and subduction beneath the Japanese Island arc at the Nankai Trough which is the natural boundary between the basin and the Japanese Island arc.At the positions of 25 N,24 N,23 N and 18 N,obvious discontinuity is shown,which belongs to natural topographic discontinuity.Therefore,the KPR is topographically discontinuous.
文摘利用机载Ka波段云雷达(Airborne Ka-Band Precipitation Cloud Radar, KPR)和粒子测量系统(Droplet Measurement Technologies, DMT),分析了2018年4月22日黄淮气旋背景系统下积层混合云中对流泡的动力和微物理特征。首先,对Ka波段云雷达观测的山东地区春季36个对流泡样本按照回波强度、水平尺度、回波顶高三个参量进行统计,结果表明平均回波强度为20~30 d BZ的对流泡占69%。对流泡水平尺度为15~30 km,占61%。对流泡最大回波顶高集中在6~8 km,比周边层云高2~4 km。之后,对4月22日积层混合云中的对流泡个例微物理参数进行统计,结果表明对流泡内部以上升气流为主,最大上升气流速度达到1.35 m s^-1,平均上升气流速度为0.22 m s^-1;对流泡内过冷水含量比较高,最大含水量为0.34 g m^-3,平均含水量为0.15 g m^-3。对流泡内冰晶数浓度是泡外的5.5倍,平均直径是泡外的1.7倍。结合云粒子图像探头,发现对流泡前沿和尾部冰粒子以柱状和辐枝状为主,而对流泡核心区域冰粒子以聚合体形式存在。冰粒子通过凇附过程和碰并过程增长,过冷水含量不足时冰粒子的凇附增长形成柱状粒子,含量充足时可迅速凇附成霰粒子。对流泡内降水形成的微物理机制不完全相同,主要依赖过冷水含量。当云中有充足的过冷水分布时,高层冰晶通过凇附增长形成霰粒子,通过融化层后形成降水;当云中缺少过冷水时,降水的形成主要通过水汽凝华过程形成冰雪晶,然后雪晶通过聚合过程实现增长。
基金The China Ocean Mineral Resources R & D Association (COMRA),The Basic Research Project of the Ministryof Science and Technology under contract No. 2008 FY220300the National Natural Science Foundation of China undercontract No. 40609034
文摘Based on the published data of structure geology,geochronology,petrology and isotope geochemistry,the authors of this paper have conducted studies on the tectonic evolution history of Japan arc system and Kyushu-Palau ridge(KPR) . The studies show that the initial Japan arc system was resulted from the subduction of ancient Pacific plate beneath Eurasian Plate in Permian. It was part of an Andean-type continental volcanic arc which occurred in the offshore in the east of Asian during late Mesozoic era. The formation of tertiary back-arc basin(Japan Sea) resulted in the fundamental tectonic framework of the present arc system. Since Quaternary the system has been lying at E-W compression tectonic setting due to the eastward subduction of Amur Plate. It is expected that Japan arc system will be juxtaposed with Asian continent,which is similar to the present Taiwan arc system. The origin of Philippine Sea Plate(PSP) is still in debate. Some studies argued that it is a trapped oceanic crust segment,while the others insisted that it is a back-arc basin accompanied with ancient IBM arc. However,it is all agreed that the tectonic evolution of PSP started since 50 Ma,i.e.,PSP has drifted from the site around equator at 50 Ma to the present site,and the subduction of PSP along Nankai trough-Ryukyu Trench beneath the Japan arc system during 6–2 Ma led to the formation of the present Ryukyu arc system. Of the PSP,the KPR has been found with the oldest rocks formed at 38 Ma. Combining with its geochemical characteristics of oceanic arc tholeiite,it is suggested that KPR is an intraoceanic volcanic arc,more specifically,a relic arc(i.e.,rear arc of the ancient IBM) after rifting of ancient IBM. In addition,Amami-Daito province is of arc tectonic affinity,but has been affected by mantle plume. Therefore,based on their respective tectonic evolution history and geochemical characteristics of rock samples,it is inferred that there is no genetic relationship between Japan arc system and KPR. It is noted that rocks reflecting continental crust basement feature have been collected on the northern tip of KPR,which may be related to the process of KPR accreting on Japan arc,but the arc-continent accretion process are still at initial stage of modern continental crust accretion model. However,due to the scarcity of data of the northern tip of KPR,crustal structure of this location and its adjacent Nankai trough need to be further constrained by geophysical studies in the future.
基金supported by the National Key Research and Development Project(Grant No.2019YFA0606803,2016YFA0601704)the National Natural Science Foundation of China(Grant No.41925022)+1 种基金the Innovation and Development Project of China Meteorological Administration(CXFZ2022J036)the Science and Technology Development Fund of Hubei Meteorological Bureau(Grant No.2017Y06,2017Y07,2016Y06,2019Y10).
文摘This study investigates the cloud macro-and micro-physical characteristics in the convective and stratiform regions and their different responses to the seeding for mixed convective-stratiform clouds that occurred in Shandong province on 21 May 2018,based on the observations from the aircraft,the Suomi National Polar-Orbiting Partnership(NPP)satellite,and the high-resolution Himawari-8(H8)satellite.The aircraft observations show that convection was deeper and radar echoes were significantly enhanced with higher tops in response to seeding in the convective region.This is linked with the conversion of supercooled liquid droplets to ice crystals with released latent heat,resulting in strengthened updrafts,enhanced radar echoes,higher cloud tops,and more and larger precipitation particles.In contrast,in the stratiform cloud region,after the Silver Iodide(AgI)seeding,the radar echoes become significantly weaker at heights close to the seeding layer,with the echo tops lowered by 1.4–1.7 km.In addition,a hollow structure appears at the height of 6.2–7.8 km with a depth of about 1.6 km and a diameter of about 5.5 km,and features such as icing seeding tracks appear.These suggest that the transformation between droplets and ice particles was accelerated by the seeding in the stratiform part.The NPP and H8 satellites also show that convective activity was stronger in the convective region after seeding;while in the stratiform region,a cloud seeding track with a width of 1–3 km appears 10 km downstream of the seeding layer 15 minutes after the AgI seeding,which moves along the wind direction as width increases.
基金This work was supported by the project of China Geological Survey(DD20191002)the Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou)(GML2019ZD0208)the National Natural Science Foundation of China(41606080,41576068)。
文摘The southern part of the Kyushu-Palau Ridge(KPR)is located at the conjunction of the West Philippine Basin,the Parece Vela Basin,the Palau Basin,and the Caroline Basin.This area has extremely complex structures and is critical for the research on the tectonic evolution of marginal seas in the Western Pacific Ocean.However,only few studies have been completed on the southern part,and the geophysical fields and deep structures in this part are not well understood.Given this,this study finely depicts the characteristics of the gravity and magnetic anomalies and extracts information on deep structures in the southern part of the KPR based on the gravity and magnetic data obtained from the 11th expedition of the deep-sea geological survey of the Western Pacific Ocean conducted by the Guangzhou Marine Geological Survey,China Geological Survey using the R/V Haiyangdizhi 6.Furthermore,with the data collected on the water depth,sediment thickness,and multichannel seismic transects as constraints,a 3D density model and Moho depths of the study area were obtained using 3D density inversion.The results are as follows.(1)The gravity and magnetic anomalies in the study area show distinct zoning and segmentation.In detail,the gravity and magnetic anomalies to the south of 11°N of the KPR transition from high-amplitude continuous linear positive anomalies into low-amplitude intermittent linear positive anomalies.In contrast,the gravity and magnetic anomalies to the north of 11°N of the KPR are discontinuous and show alternating positive and negative anomalies.These anomalies can be divided into four sections,of which the separation points correspond well to the locations of deep faults,thus,revealing different field-source attributes and tectonic genesis of the KPR.(2)The Moho depth in the basins in the study area is 6-12 km.The Moho depth in the southern part of KPR show segmentation.Specifically,the depth is 10‒12 km to the north of 11°N,12‒14 km from 9.5°N to 11°N,14-16 km from 8.5°N to 9.5°N,and 16‒25 km in the Palau Islands.(3)The KPR is a remnant intra-oceanic arc with the oceanic-crust basement.which shows noticeably discontinuous from north to south in geological structure and is intersected by NEE-trending lithospheric-scale deep faults.With large and deep faults F3 and F1(the Mindanao fault)as boundaries overall,the southern part of the KPR can be divided into three zones.In detail,the portion to the south of 8.5°N(F3)is a tectonically active zone,the KPR portion between 8.5°N and 11°N is a tectonically active transition zone,and the portion to the north of 11°N is a tectonically inactive zone.(4)The oceanic crust in the KPR is slightly thicker than that in the basins on both sides of the ridge,and it is inferred that the KPR formed from the thickening of the oceanic crust induced by the upwelling of deep magma in the process of rifting of remnant arcs during the Middle Oligocene.In addition,it is inferred that the thick oceanic crust under the Palau Islands is related to the constant upwelling of deep magma induced by the continuous northwestward subduction of the Caroline Plate toward the Palau Trench since the Late Oligocene.This study provides a scientific basis for systematically understanding the crustal attributes,deep structures,and evolution of the KPR.